ZnO growth on Si with low-temperature CdO and ZnO buffer layers by molecular-beam epitaxy

被引:8
|
作者
Xiu, FX [1 ]
Yang, Z
Zhao, DT
Liu, JL
Alim, KA
Balandin, AA
Itkis, ME
Haddon, RC
机构
[1] Univ Calif Riverside, Quantum Struct Lab, Dept Elect Engn, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Nanodevice Lab, Dept Elect Engn, Riverside, CA 92521 USA
[3] Univ Calif Riverside, Ctr Nanoscale Sci & Engn, Dept Chem, Riverside, CA 92521 USA
[4] Univ Calif Riverside, Ctr Nanoscale Sci & Engn, Dept Chem & Environm Engn, Riverside, CA 92521 USA
关键词
ZnO; buffer layer; atomic force microscopy (AFM); photoluminescence (PL); x-ray diffraction (XRD); Raman scattering;
D O I
10.1007/s11664-006-0122-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low-temperature (LT) buffer-layer techniques were employed to improve the crystalline quality of ZnO films grown by molecular-beam epitaxy (MBE). Photoluminescence (PL) spectra show that CdO, as a hetero-buffer layer with a rock-salt structure, does not improve the quality of ZnO film grown on top. However, by using ZnO as a homo-buffer layer, the crystalline quality can be greatly enhanced, as indicated by PL, atomic force microscopy (AFM), x-ray diffraction (XRD), and Raman scattering. Moreover, the buffer layer grown at 450 degrees C is found to be the best template to further improve the quality of top ZnO film. The mechanisms behind this result are the strong interactions between point. defects and threading dislocations in the ZnO buffer layer.
引用
收藏
页码:691 / 694
页数:4
相关论文
共 50 条
  • [1] ZnO growth on Si with low-temperature CdO and ZnO buffer layers by molecular-beam epitaxy
    F. X. Xiu
    Z. Yang
    D. T. Zhao
    J. L. Liu
    K. A. Alim
    A. A. Balandin
    M. E. Itkis
    R. C. Haddon
    Journal of Electronic Materials, 2006, 35 : 691 - 694
  • [2] Low-temperature growth of high-quality ZnO layers by surfactant-mediated molecular-beam epitaxy
    Park, S. H.
    Suzuki, H.
    Minegishi, T.
    Fujimoto, G.
    Park, J. S.
    Im, I. H.
    Oh, D. C.
    Cho, M. W.
    Yao, T.
    JOURNAL OF CRYSTAL GROWTH, 2007, 309 (02) : 158 - 163
  • [3] ZnO growth on si with low-temperature ZnO buffer layers by ECR-assisted MBE
    Xiu, FX
    Yang, Z
    Zhao, DT
    Liu, JL
    Alim, KA
    Balandin, AA
    Itkis, ME
    Haddon, RC
    JOURNAL OF CRYSTAL GROWTH, 2006, 286 (01) : 61 - 65
  • [4] INSTABILITY IN LOW-TEMPERATURE MOLECULAR-BEAM EPITAXY GROWTH OF SI/SI(111)
    YANG, HN
    WANG, GC
    LU, TM
    PHYSICAL REVIEW LETTERS, 1994, 73 (17) : 2348 - 2351
  • [5] Role of ZnS buffer layers in growth of zincblende ZnO on GaAs substrates by metalorganic molecular-beam epitaxy
    Ashrafi, AA
    Ueta, A
    Kumano, H
    Suemune, I
    JOURNAL OF CRYSTAL GROWTH, 2000, 221 : 435 - 439
  • [6] HYBRID MOLECULAR-BEAM EPITAXY LOW-TEMPERATURE LIQUID-PHASE EPITAXY GROWTH OF GAAS (ALGAAS) LAYERS ON SI
    BALDUS, A
    BETT, A
    SULIMA, OV
    WETTLING, W
    JOURNAL OF CRYSTAL GROWTH, 1994, 141 (3-4) : 315 - 323
  • [7] Low-temperature buffer layer for growth of a low-dislocation-density SiGe layer on Si by molecular-beam epitaxy
    Chen, H
    Guo, LW
    Cui, Q
    Hu, Q
    Huang, Q
    Zhou, JM
    JOURNAL OF APPLIED PHYSICS, 1996, 79 (02) : 1167 - 1169
  • [8] Growth of TlGaAs by low-temperature molecular-beam epitaxy
    Kajikawa, Y
    Kubota, H
    Asahina, S
    Kanayama, N
    JOURNAL OF CRYSTAL GROWTH, 2002, 237 (1-4 II) : 1495 - 1498
  • [9] LOW-TEMPERATURE GROWTH OF MGO BY MOLECULAR-BEAM EPITAXY
    YADAVALLI, S
    YANG, MH
    FLYNN, CP
    PHYSICAL REVIEW B, 1990, 41 (11): : 7961 - 7963
  • [10] LOW-TEMPERATURE CLEANING PROCESSES FOR SI MOLECULAR-BEAM EPITAXY
    THOMPSON, PE
    TWIGG, ME
    GODBEY, DJ
    HOBART, KD
    SIMONS, DS
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1993, 11 (03): : 1077 - 1082