Compactification tuning for nonlinear localized modes in sawtooth lattices

被引:34
作者
Johansson, Magnus [1 ]
Naether, Uta [2 ,3 ]
Vicencio, Rodrigo A. [4 ,5 ]
机构
[1] Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden
[2] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, CSIC, Dept Fis Mat Condensada, E-50009 Zaragoza, Spain
[4] Univ Chile, Fac Ciencias, Ctr Opt & Photon CEFOP, Dept Fis, Santiago 7800003, Chile
[5] Univ Chile, Fac Ciencias, Ctr Opt & Photon CEFOP, MSI Nucl Adv Opt, Santiago 7800003, Chile
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 03期
基金
瑞典研究理事会;
关键词
SOLITONS; MOBILITY;
D O I
10.1103/PhysRevE.92.032912
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss the properties of nonlinear localized modes in sawtooth lattices, in the framework of a discrete nonlinear Schrodinger modelwith general on-site nonlinearity. Analytic conditions for existence of exact compact three-site solutions are obtained, and explicitly illustrated for the cases of power-law (cubic) and saturable nonlinearities. These nonlinear compact modes appear as continuations of linear compact modes belonging to a flat dispersion band. While for the linear system a compact mode exists only for one specific ratio of the two different coupling constants, nonlinearity may lead to compactification of otherwise noncompact localized modes for a range of coupling ratios, at some specific power. For saturable lattices, the compactification power can be tuned by also varying the nonlinear parameter. Introducing different on-site energies and anisotropic couplings yields further possibilities for compactness tuning. The properties of strongly localized modes are investigated numerically for cubic and saturable nonlinearities, and in particular their stability over large parameter regimes is shown. Since the linear flat band is isolated, its compact modes may be continued into compact nonlinear modes both for focusing and defocusing nonlinearities. Results are discussed in relation to recent realizations of sawtooth photonic lattices.
引用
收藏
页数:11
相关论文
共 29 条
[1]   Compactons in Nonlinear Schrodinger Lattices with Strong Nonlinearity Management [J].
Abdullaev, F. Kh. ;
Kevrekidis, P. G. ;
Salerno, M. .
PHYSICAL REVIEW LETTERS, 2010, 105 (11)
[2]   Band touching from real-space topology in frustrated hopping models [J].
Bergman, Doron L. ;
Wu, Congjun ;
Balents, Leon .
PHYSICAL REVIEW B, 2008, 78 (12)
[3]   Dynamical instability in a trimeric chain of interacting Bose-Einstein condensates [J].
Buonsante, P ;
Franzosi, R ;
Penna, V .
PHYSICAL REVIEW LETTERS, 2003, 90 (05) :4
[4]   Control of unstable macroscopic oscillations in the dynamics of three coupled Bose condensates [J].
Buonsante, P. ;
Franzosi, R. ;
Penna, V. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (28)
[5]   Low-temperature properties of the Hubbard model on highly frustrated one-dimensional lattices [J].
Derzhko, O. ;
Richter, J. ;
Honecker, A. ;
Maksymenko, M. ;
Moessner, R. .
PHYSICAL REVIEW B, 2010, 81 (01)
[6]   Discrete breathers - Advances in theory and applications [J].
Flach, Sergej ;
Gorbach, Andrey V. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 467 (1-3) :1-116
[7]   Detangling flat bands into Fano lattices [J].
Flach, Sergej ;
Leykam, Daniel ;
Bodyfelt, Joshua D. ;
Matthies, Peter ;
Desyatnikov, Anton S. .
EPL, 2014, 105 (03)
[8]   Experimental observation of bulk and edge transport in photonic Lieb lattices [J].
Guzman-Silva, D. ;
Mejia-Cortes, C. ;
Bandres, M. A. ;
Rechtsman, M. C. ;
Weimann, S. ;
Nolte, S. ;
Segev, M. ;
Szameit, A. ;
Vicencio, R. A. .
NEW JOURNAL OF PHYSICS, 2014, 16
[9]   Bose condensation in flat bands [J].
Huber, Sebastian D. ;
Altman, Ehud .
PHYSICAL REVIEW B, 2010, 82 (18)
[10]   Many-particle dynamics of bosons and fermions in quasi-one-dimensional flat-band lattices [J].
Hyrkas, M. ;
Apaja, V. ;
Manninen, M. .
PHYSICAL REVIEW A, 2013, 87 (02)