Economic plantwide control of a hybrid solid oxide fuel cell - gas turbine system

被引:4
|
作者
Dehghan, Ali Reza [1 ]
Fanaei, Mohammad Ali [1 ]
Panahi, Mehdi [1 ]
机构
[1] Ferdowsi Univ Mashhad, Fac Engn, Chem Engn Dept, Mashhad, Iran
关键词
SOFC-GT hybrid system; Plantwide control; Active constraint regions; Efficiency map; Self-optimizing controlled variables; CONTROL-STRUCTURE DESIGN; SELF-OPTIMIZING CONTROL; CONTROL STRATEGY; POWER-SYSTEMS; SOFC; OPERATION; OPTIMIZATION; LIMITATIONS; CAPABILITY; EFFICIENCY;
D O I
10.1016/j.apenergy.2022.120232
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study presents a novel approach for hybrid solid oxide fuel cell (SOFC) - gas turbine (GT) system control. The approach is based on a plantwide top-down strategy which leads to a proper selection of the control structure. As a result, while maintaining the system stability and dynamic performance during transients, the system operation is also kept at optimal conditions using simple PI controllers. The optimization cost function is defined to be the unit price of the net produced electricity. The system inlet fuel flow and the power drawn from the SOFC are considered as the main system disturbances. The two-dimensional disturbance space is discretized. Rigorous optimization problems are performed in each disturbance node and variation of system efficiency and constraint values are evaluated. Three different operating regions, with different sets of active constraints, are characterized. Equivalent to the identified operating regions, an efficiency map is also provided which illustrates the achievable system efficiencies in presence of disturbances. Based on the optimization outcomes, the identification of appropriate controlled variables is accomplished in each region. It revealed that to keep near-optimal operation under various operating conditions; the combustion chamber outlet temperature should be treated as a key controlled variable. Finally, dynamic simulations are performed and the proficiency of the proposed control structure is justified. According to the results, maximum SOFC temperature transients in all regions would be less than 2 K.min(-1) while variations on the hybrid system output power are kept below 3 % and efficiency loss is restricted to 2 %.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Design of a Variable Geometry Turbine Control Strategy for Solid Oxide Fuel Cell and Gas Turbine Hybrid Systems
    Weng, Caihao
    Sun, Jing
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 541 - 546
  • [22] The Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Hybrid System Numerical Model
    Saisirirat, Penyarat
    2015 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 2015, 79 : 845 - 850
  • [23] Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)-Gas Turbine System
    Calise, F.
    d'Accadia, M. Dentice
    Palombo, A.
    Vanoli, L.
    ENERGY, 2006, 31 (15) : 3278 - 3299
  • [24] System Study on Hydrothermal Gasification Combined With a Hybrid Solid Oxide Fuel Cell Gas Turbine
    Toonssen, R.
    Aravind, P. V.
    Smit, G.
    Woudstra, N.
    Verkooijen, A. H. M.
    FUEL CELLS, 2010, 10 (04) : 643 - 653
  • [25] Cycle analysis of micro gas turbine-solid oxide fuel cell hybrid system
    Uechi, Hideyuki
    Kimijima, Shinji
    Kasagi, Nobuhide
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2002, 68 (666): : 626 - 635
  • [26] Performance Study of Hybrid Solid Oxide Fuel Cell-Gas Turbine Power System
    Zhao, Hongbin
    Liu, Xu
    ACHIEVEMENTS IN ENGINEERING MATERIALS, ENERGY, MANAGEMENT AND CONTROL BASED ON INFORMATION TECHNOLOGY, PTS 1 AND 2, 2011, 171-172 : 319 - 322
  • [27] Linear Quadratic Regulator for a Bottoming Solid Oxide Fuel Cell Gas Turbine Hybrid System
    Mueller, Fabian
    Jabbari, Faryar
    Brouwer, Jacob
    Junker, S. Tobias
    Ghezel-Ayagh, Hossein
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2009, 131 (05): : 1 - 9
  • [28] A Solid Oxide Fuel Cell-Gas Turbine Hybrid System for a Freight Rail Application
    Ahrend, Philipp
    Azizi, Ali
    Brouwer, Jacob
    Samuelsen, G. Scott
    PROCEEDINGS OF THE ASME 13TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2019, 2019,
  • [29] PARAMETRIC ANALYSIS ON A NOVEL HYBRID SYSTEM OF SOLID OXIDE FUEL CELL AND MICRO GAS TURBINE
    Zhang, Wenshu
    Zhang, Sheng
    Weng, Shilie
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2010, VOL 5, PTS A AND B, 2012, : 955 - 961
  • [30] The development of control strategy for solid oxide fuel cell and micro gas turbine hybrid power system in ship application
    Jiqing He
    Peilin Zhou
    David Clelland
    Journal of Marine Science and Technology, 2014, 19 : 462 - 469