The lunar photoelectron sheath: A change in trapping efficiency during a solar storm

被引:20
作者
Farrell, W. M. [1 ,4 ]
Poppe, A. R. [2 ,4 ]
Zimmerman, M. I. [1 ,3 ,4 ]
Halekas, J. S. [2 ,4 ]
Delory, G. T. [2 ,4 ]
Killen, R. M. [1 ,4 ]
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[3] Oak Ridge Associated Univ, Oak Ridge, TN USA
[4] NASA, Ames Res Ctr, Lunar Sci Inst, Moffett Field, CA 94035 USA
关键词
Moon; photoelectrons; sheath; coronal mass ejection; MAGNETIC-FIELDS; SPACE; DUST;
D O I
10.1002/jgre.20086
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
On the lunar dayside, photoelectrons are quasi-constantly emitted from the Moon's surface and this electron flux acts to typically charge the dayside lunar surface a few volts positive. In arriving at an equilibrium surface potential, the surface will charge to balance the two primary currents: the outgoing photoelectron flux, J(p), against the incoming solar wind electron thermal flux, J(e). In nominal solar wind conditions, J(p)>J(e) and the surface charges positive, trapping most of the photoelectrons. However, during the passage of a coronal mass ejection (CME), the incoming electron thermal flux, J(e), will quickly change from being less than J(p) to being greater than J(p) on time scales of similar to 1-2% of a lunation. Using a set of independently developed particle-in-cell plasma codes, we find at times when J(p)/J(e) < 1, there is substantially less near-surface electrostatic trapping of the photoelectrons due to the reduction of the restraining surface potential. The photoelectron population then has almost direct access to upstream regions. We find that the morphology of the sheath is very different in the CME's dense cool plasma than in the nominal solar wind, with a larger relative portion of the photoelectrons now liberated to propagate upstream into plasma regions ahead of the Moon.
引用
收藏
页码:1114 / 1122
页数:9
相关论文
共 21 条
[1]   The ARTEMIS Mission [J].
Angelopoulos, V. .
SPACE SCIENCE REVIEWS, 2011, 165 (1-4) :3-25
[2]   Solar-Storm/Lunar Atmosphere Model (SSLAM): An overview of the effort and description of the driving storm environment [J].
Farrell, W. M. ;
Halekas, J. S. ;
Killen, R. M. ;
Delory, G. T. ;
Gross, N. ;
Bleacher, L. V. ;
Krauss-Varben, D. ;
Travnicek, P. ;
Hurley, D. ;
Stubbs, T. J. ;
Zimmerman, M. I. ;
Jackson, T. L. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2012, 117
[3]   COHERENT CERENKOV RADIATION FROM THE SPACELAB-2 ELECTRON-BEAM [J].
FARRELL, WM ;
GURNETT, DA ;
GOERTZ, CK .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1989, 94 (A1) :443-452
[4]   THE COHERENT CERENKOV RADIATED POWER FROM A GROUP OF FIELD-ALIGNED TEST PARTICLES IN A MAGNETOPLASMA [J].
FARRELL, WM ;
GOERTZ, CK .
PLANETARY AND SPACE SCIENCE, 1990, 38 (03) :373-381
[5]  
Feuerbacher B., 1972, SUPPLEMENT 3, V3, P2655
[6]   Lunar precursor effects in the solar wind and terrestrial magnetosphere [J].
Halekas, J. S. ;
Poppe, A. R. ;
Farrell, W. M. ;
Delory, G. T. ;
Angelopoulos, V. ;
McFadden, J. P. ;
Bonnell, J. W. ;
Glassmeier, K. H. ;
Plaschke, F. ;
Roux, A. ;
Ergun, R. E. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2012, 117
[7]   Solar wind electron interaction with the dayside lunar surface and crustal magnetic fields: Evidence for precursor effects [J].
Halekas, J. S. ;
Poppe, A. ;
Delory, G. T. ;
Farrell, W. M. ;
Horanyi, M. .
EARTH PLANETS AND SPACE, 2012, 64 (02) :73-82
[8]   First remote measurements of lunar surface charging from ARTEMIS: Evidence for nonmonotonic sheath potentials above the dayside surface [J].
Halekas, J. S. ;
Delory, G. T. ;
Farrell, W. M. ;
Angelopoulos, V. ;
McFadden, J. P. ;
Bonnell, J. W. ;
Fillingim, M. O. ;
Plaschke, F. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
[9]   Electrons and magnetic fields in the lunar plasma wake [J].
Halekas, JS ;
Bale, SD ;
Mitchell, DL ;
Lin, RP .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2005, 110 (A7)
[10]  
Manka R.H., 1973, PHOTON PARTICLE INTE, V37, P347, DOI DOI 10.1007/978-94-010-2647-5_22