APPLICATIONS OF A DUALITY BETWEEN GENERALIZED TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS II

被引:5
作者
Miyakawa, Hiroki [1 ]
Takeuchi, Shingo [1 ]
机构
[1] Shibaura Inst Technol, Dept Math Sci, 307 Fukasaku,307 Fukasaku,Minuma Ku, Saitama 3378570, Japan
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2022年 / 16卷 / 04期
关键词
Generalized trigonometric function; Generalized hyperbolic function; Mitri-novi?-Adamovi? inequality; Wilker inequality; Huygens inequality; Cusa-Huygens inequality; Multiple-angle formula; Double-angle formula; p-Laplacian; INEQUALITIES;
D O I
10.7153/jmi-2022-16-102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalized trigonometric functions and generalized hyperbolic functions can be con-verted to each other by the duality formulas previously discovered by the authors. In this paper, we apply the duality formulas to prove dual pairs of Wilker-type inequalities, Huygens-type inequalities, and (relaxed) Cusa-Huygens-type inequalities for the generalized functions. In ad-dition, multiple-and double-angle formulas not previously obtained are also given.
引用
收藏
页码:1571 / 1585
页数:15
相关论文
共 15 条
[1]   Geometry and number theory on clovers [J].
Cox, DA ;
Shurman, J .
AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (08) :682-704
[2]  
Dixon AC., 1890, Quart. J. Pure Appl. Math, V24, P167
[3]   Properties of generalized trigonometric functions [J].
Edmunds, David E. ;
Gurka, Petr ;
Lang, Jan .
JOURNAL OF APPROXIMATION THEORY, 2012, 164 (01) :47-56
[4]   Inequalities for the generalized trigonometric and hyperbolic functions [J].
Klen, Riku ;
Vuorinen, Matti ;
Zhang, Xiaohui .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) :521-529
[5]   Eigenvalues, Embeddings and Generalised Trigonometric Functions [J].
Lang, Jan ;
Edmunds, David .
EIGENVALUES, EMBEDDINGS AND GENERALISED TRIGONOMETRIC FUNCTIONS, 2011, 2016 :1-+
[6]   Inequalities for the generalized trigonometric and hyperbolic functions [J].
Ma, Xiaoyan ;
Si, Xiangbin ;
Zhong, Genhong ;
He, Jianhui .
OPEN MATHEMATICS, 2020, 18 :1580-1589
[7]   Applications of a duality between generalized trigonometric and hyperbolic functions [J].
Miyakawa, Hiroki ;
Takeuchi, Shingo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 502 (01)
[8]   INEQUALITIES FOR THE GENERALIZED TRIGONOMETRIC, HYPERBOLIC AND JACOBIAN ELLIPTIC FUNCTIONS [J].
Neuman, Edward .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (03) :709-726
[9]  
OND RˇEJ DOSˇL Y, 2005, N HOLLAND MATH STUDI, V202
[10]   Two double-angle formulas of generalized trigonometric functions [J].
Sato, Shota ;
Takeuchi, Shingo .
JOURNAL OF APPROXIMATION THEORY, 2020, 250