Unstable K1-group and homotopy type of certain gauge groups

被引:40
作者
Hamanaka, H [1 ]
Kono, A
机构
[1] Hyogo Univ Teachers Educ, Dept Nat Sci, Yashiro, Hyogo 6731494, Japan
[2] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
关键词
D O I
10.1017/S0308210500004480
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We denote the group of homotopy set [X, U(n)] by the unstable W-group of X. In this paper, using the unstable K-1-group of the multi-suspended C P-2, we give a necessary condition for two principal SU(n)-bundles over 4 to have the associated gauge group of the same homotopy type, which is an improvement of the result of Sutherland and, particularly, show the complete classification of homotopy types of SU(3)-gauge groups over S-4.
引用
收藏
页码:149 / 155
页数:7
相关论文
共 9 条
[1]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[2]   Counting homotopy types of gauge groups [J].
Crabb, MC ;
Sutherland, WA .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 81 :747-768
[3]  
HAMMAKA H, 2003, J MATH KYOTO U, V42, P333
[4]  
KANE R, 1988, HOMOTOPY HOPF SPACES, V40
[5]   A NOTE ON THE HOMOTOPY TYPE OF CERTAIN GAUGE GROUPS [J].
KONO, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1991, 117 :295-297
[6]   EVALUATION MAP AND EHP SEQUENCES [J].
LANG, GE .
PACIFIC JOURNAL OF MATHEMATICS, 1973, 44 (01) :201-210
[7]  
Matsunaga Hiromichi, 1961, MEM FS KYUSHU U A, V15, P72, DOI DOI 10.2206/KYUSHUMFS.15.72
[8]   FUNCTION-SPACES RELATED TO GAUGE GROUPS [J].
SUTHERLAND, WA .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1992, 121 :185-190
[9]   SURVEY OF HOMOTOPY THEORY [J].
TODA, H .
ADVANCES IN MATHEMATICS, 1973, 10 (03) :417-455