Eigenvalue estimates for the Dirac operator depending on the Weyl tensor

被引:7
作者
Friedrich, T [1 ]
Kirchberg, KD [1 ]
机构
[1] Humboldt Univ, Inst Reine Math, D-10099 Berlin, Germany
关键词
dirac operator; eigenvalues; harmonic Weyl tensor; Einstein manifold;
D O I
10.1016/S0393-0440(01)00055-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove new lower bounds for the first eigenvalue of the Dirac operator on compact manifolds whose Weyl tensor or curvature tensor, respectively, is divergence-free. In the special case of Einstein manifolds, we obtain estimates depending on the Weyl tensor. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:196 / 207
页数:12
相关论文
共 8 条
[1]  
Besse A., 1981, GEOMETRIE RIEMANNIEN
[2]   THE CLASSIFICATION OF 4-DIMENSIONAL KAHLER-MANIFOLDS WITH SMALL EIGENVALUE OF THE DIRAC OPERATOR [J].
FRIEDRICH, T .
MATHEMATISCHE ANNALEN, 1993, 295 (03) :565-574
[4]   A REMARK ON THE 1ST EIGENVALUE OF THE DIRAC OPERATOR ON 4-DIMENSIONAL MANIFOLDS [J].
FRIEDRICH, T .
MATHEMATISCHE NACHRICHTEN, 1981, 102 :53-56
[5]  
FRIEDRICH T, IN PRESS MATH ANN
[7]  
Kirchberg K. D., 1990, Journal of Geometry and Physics, V7, P449, DOI 10.1016/0393-0440(90)90001-J
[8]   Eigenvalue estimates for the Dirac operator on quaternionic Kahler manifolds [J].
Kramer, W ;
Semmelmann, U ;
Weingart, G .
MATHEMATISCHE ZEITSCHRIFT, 1999, 230 (04) :727-751