Decoherence in solid-state qubits

被引:133
作者
Chirolli, Luca [2 ]
Burkard, Guido [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Theoret Phys C, D-52054 Aachen, Germany
[2] Univ Konstanz, Dept Phys, D-78457 Constance, Germany
关键词
decoherence; quantum dots; spin qubits; spin coherence; superconducting qubits;
D O I
10.1080/00018730802218067
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The interaction of solid-state qubits with environmental degrees of freedom strongly affects the qubit dynamics, and leads to decoherence. In quantum information processing with solid-state qubits, decoherence significantly limits the performances of such devices. Therefore, it is necessary to fully understand the mechanisms that lead to decoherence. In this review, we discuss how decoherence affects two of the most successful realizations of solid-state qubits, namely, spin qubits and superconducting qubits. In the former, the qubit is encoded in the spin 1/2 of the electron, and it is implemented by confining the electron spin in a semiconductor quantum dot. Superconducting devices show quantum behaviour at low temperatures, and the qubit is encoded in the two lowest energy levels of a superconducting circuit. The electron spin in a quantum dot has two main decoherence channels, a (Markovian) phonon-assisted relaxation channel, due to the presence of a spin-orbit interaction, and a (non-Markovian) spin bath constituted by the spins of the nuclei in the quantum dot that interact with the electron spin via the hyperfine interaction. In a superconducting qubit, decoherence takes place as a result of fluctuations in the control parameters, such as bias currents, applied flux and bias voltages, and via losses in the dissipative circuit elements.
引用
收藏
页码:225 / 285
页数:61
相关论文
共 114 条
[1]  
Abragam A., 1961, The Principles of Nuclear Magnetism
[2]  
Abragam A., 1996, PRINCIPLES NUCL MAGN
[3]   Electrical control of spin relaxation in a quantum dot [J].
Amasha, S. ;
MacLean, K. ;
Radu, Iuliana P. ;
Zumbuehl, D. M. ;
Kastner, M. A. ;
Hanson, M. P. ;
Gossard, A. C. .
PHYSICAL REVIEW LETTERS, 2008, 100 (04)
[4]   Adiabatic quantum computation with Cooper pairs [J].
Averin, DV .
SOLID STATE COMMUNICATIONS, 1998, 105 (10) :659-664
[5]   Dephasing of a superconducting qubit induced by photon noise [J].
Bertet, P ;
Chiorescu, I ;
Burkard, G ;
Semba, K ;
Harmans, CJPM ;
DiVincenzo, DP ;
Mooij, JE .
PHYSICAL REVIEW LETTERS, 2005, 95 (25)
[6]  
BERTET P, 2005, CONDMAT0507290
[7]  
BERTET P, 2004, CONDMAT0412485
[8]   1/f flux noise in Josephson phase qubits [J].
Bialczak, Radoslaw C. ;
McDermott, R. ;
Ansmann, M. ;
Hofheinz, M. ;
Katz, N. ;
Lucero, Erik ;
Neeley, Matthew ;
O'Connell, A. D. ;
Wang, H. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2007, 99 (18)
[9]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[10]   Quantum-information processing with circuit quantum electrodynamics [J].
Blais, Alexandre ;
Gambetta, Jay ;
Wallraff, A. ;
Schuster, D. I. ;
Girvin, S. M. ;
Devoret, M. H. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2007, 75 (03)