Second-order accurate computation of curvatures in a level set framework using novel high-order reinitialization schemes

被引:56
作者
du Chene, Antoine [1 ,3 ]
Min, Chohong [4 ,5 ]
Gibou, Frederic [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[3] Ecole Polytech, Palaiseau, France
[4] Kyung Hee Univ, Dept Math, Seoul 130701, South Korea
[5] Kyung Hee Univ, Res Inst Basic Sci, Seoul 130701, South Korea
基金
美国国家科学基金会;
关键词
level set method; second-order accurate curvature; reinitialization equation; adaptive mesh refinement;
D O I
10.1007/s10915-007-9177-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a high-order accurate scheme for the reinitialization equation of Sussman et al.(J. Comput. Phys. 114:146-159, [1994]) that guarantees accurate computation of the interface's curvatures in the context of level set methods. This scheme is an extension of the work of Russo and Smereka (J. Comput. Phys. 163:51-67, [2000]). We present numerical results in two and three spatial dimensions to demonstrate fourth-order accuracy for the reinitialized level set function, third-order accuracy for the normals and second-order accuracy for the interface's mean curvature in the L(1)- and L(infinity)-norms. We also exploit the work of Min and Gibou (UCLA CAM Report (06-22), [2006]) to show second-order accurate scheme for the computation of the mean curvature on non-graded adaptive grids.
引用
收藏
页码:114 / 131
页数:18
相关论文
共 17 条
[1]   Partial differential equations-based segmentation for radiotherapy treatment planning [J].
Gibou, F ;
Levy, D ;
Cárdenas, C ;
Liu, PY ;
Boyer, A .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2005, 2 (02) :209-226
[2]   A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem [J].
Gibou, F ;
Fedkiw, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 202 (02) :577-601
[3]   A level set approach for the numerical simulation of dendritic growth [J].
Gibou, F ;
Fedkiw, R ;
Caflisch, R ;
Osher, S .
JOURNAL OF SCIENTIFIC COMPUTING, 2003, 19 (1-3) :183-199
[4]   Weighted ENO schemes for Hamilton-Jacobi equations [J].
Jiang, GS ;
Peng, DP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06) :2126-2143
[5]  
Liu X.-D., 1996, J COMPUT PHYS, V126, P202
[6]   Simulating water and smoke with an octree data structure [J].
Losasso, F ;
Gibou, F ;
Fedkiw, R .
ACM TRANSACTIONS ON GRAPHICS, 2004, 23 (03) :457-462
[7]   Spatially adaptive techniques for level set methods and incompressible flow [J].
Losasso, Frank ;
Fedkiw, Ronald ;
Osher, Stanley .
COMPUTERS & FLUIDS, 2006, 35 (10) :995-1010
[8]   A second order accurate level set method on non-graded adaptive Cartesian grids [J].
Min, Chohong ;
Gibou, Frederic .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (01) :300-321
[9]   FRONTS PROPAGATING WITH CURVATURE-DEPENDENT SPEED - ALGORITHMS BASED ON HAMILTON-JACOBI FORMULATIONS [J].
OSHER, S ;
SETHIAN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 79 (01) :12-49
[10]  
Osher S., 2002, LEVEL SET METHODS DY