Retinotopic Sparse Representation of Natural Images

被引:0
|
作者
Ma, Libo [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Neurosci, State Key Lab Neurobiol, Shanghai 200031, Peoples R China
关键词
PRIMARY VISUAL-CORTEX; INDEPENDENT COMPONENTS; SIMPLE CELLS; FILTERS; SCENES;
D O I
10.1007/978-90-481-9695-1_69
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Independent component analysis and sparse coding have provided a functional explanations of simple cells in primary visual cortex (V1). The learned components(corresponding to the responses of neurons) of these models are randomly scattered and have no particular order. In practice, however, the arrangement of neurons in VI are ordered in a very specific manner. In this paper, we propose a sparse coding of natural images under a retinotopic map constraint. We investigate the spatial specifically connections between retinal input and v1 neurons. Some simulations on natural images demonstrate that the proposed model can learn a retinotopic sparse representation efficiently.
引用
收藏
页码:435 / 439
页数:5
相关论文
共 50 条
  • [1] Manifold based sparse representation for facial understanding in natural images
    Ptucha, Raymond
    Savakis, Andreas
    IMAGE AND VISION COMPUTING, 2013, 31 (05) : 365 - 378
  • [2] Spatiotopic and retinotopic memory in the context of natural images
    Steinberg, Noah J.
    Roth, Zvi N.
    Merriam, Elisha P.
    JOURNAL OF VISION, 2022, 22 (04):
  • [3] Sparse representation of astronomical images
    Rebollo-Neira, Laura
    Bowley, James
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2013, 30 (04) : 758 - 768
  • [4] Sparse Representation of Complex MRI Images
    Nandakumar, Hari Prasad
    Ji, Jim
    2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vols 1-8, 2008, : 398 - 401
  • [5] Convolutional Sparse Representation of Color Images
    Wohlberg, Brendt
    2016 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI), 2016, : 57 - 60
  • [6] Denoising of complex valued images by sparse representation
    2015, Institute of Computing Technology (27):
  • [7] MULTILEVEL DICTIONARY LEARNING FOR SPARSE REPRESENTATION OF IMAGES
    Thiagarajan, Jayaraman J.
    Ramamurthy, Karthikeyan N.
    Spanias, Andreas
    2011 IEEE DIGITAL SIGNAL PROCESSING WORKSHOP AND IEEE SIGNAL PROCESSING EDUCATION WORKSHOP (DSP/SPE), 2011, : 271 - 276
  • [8] Human detection in images using sparse representation
    Yang, Qi
    Xue, Dingyu
    Wang, Zhen
    Journal of Computational Information Systems, 2012, 8 (09): : 3689 - 3696
  • [9] Sparse representation of images with hybrid linear models
    Huang, K
    Yang, AY
    Ma, Y
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 1281 - 1284
  • [10] RETINOTOPIC REPRESENTATION IN PIGEON CEREBELLUM
    CLARKE, PGH
    JOURNAL OF PHYSIOLOGY-LONDON, 1973, 234 (02): : P68 - P69