Matrix form of the inverse Young inequalities

被引:7
作者
Manjegani, S. M. [1 ]
Norouzi, A. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415685111, Iran
关键词
Inverse Young inequality; Positive semi-definite matrix; Singular values; SINGULAR-VALUES;
D O I
10.1016/j.laa.2015.08.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use operator monotone and operator convex functions to prove an inverse to the Young inequality for eigenvalues of positive definite matrices and then apply it to obtain a matrix inverse Young inequality which can be considered as a complement of a result of T. Ando. Also, we give a necessary and sufficient condition for the equality. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:484 / 493
页数:10
相关论文
共 11 条
[1]  
Ando T, 1995, OPER THEOR, V75, P33
[2]  
[Anonymous], 2013, Matrix Analysis
[3]  
[Anonymous], 1987, MATRIX ANAL
[4]   Young's inequality in trace-class operators [J].
Argerami, M ;
Farenick, DR .
MATHEMATISCHE ANNALEN, 2003, 325 (04) :727-744
[5]  
Bakherad M., 2014, LINEAR ALGEBRA APPL, V44, P26
[6]   ON THE SINGULAR-VALUES OF A PRODUCT OF OPERATORS [J].
BHATIA, R ;
KITTANEH, F .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :272-277
[7]   Positive definite functions and operator inequalities [J].
Bhatia, R ;
Parthasarathy, KR .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 :214-228
[8]  
Bhatia R., 2003, MATH ANN, V325, P727
[9]  
Erlijman J, 2002, OPER THEOR, V130, P171
[10]   Matrix Young inequalities for the Hilbert-Schmidt norm [J].
Hirzallah, O ;
Kittaneh, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 308 (1-3) :77-84