Deterministic estimation of hydrological thresholds for shallow landslide initiation and slope stability models: case study from the Somma-Vesuvius area of southern Italy

被引:91
作者
De Vita, P. [1 ]
Napolitano, E. [1 ]
Godt, J. W. [2 ]
Baum, R. L. [2 ]
机构
[1] Univ Naples Federico II, Naples, Italy
[2] US Geol Survey, Denver, CO 80225 USA
关键词
Ash-fall pyroclastic deposit; Debris flows initiation; Somma-Vesuvius; PYROCLASTIC DEPOSITS; CAMPANIA REGION; RAINFALL THRESHOLDS; DEBRIS FLOWS; HYDRAULIC CONDUCTIVITY; MASS MOVEMENTS; Y BP; ERUPTION; SOILS; FALL;
D O I
10.1007/s10346-012-0348-2
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Rainfall-induced debris flows involving ash-fall pyroclastic deposits that cover steep mountain slopes surrounding the Somma-Vesuvius volcano are natural events and a source of risk for urban settlements located at footslopes in the area. This paper describes experimental methods and modelling results of shallow landslides that occurred on 5-6 May 1998 in selected areas of the Sarno Mountain Range. Stratigraphical surveys carried out in initiation areas show that ash-fall pyroclastic deposits are discontinuously distributed along slopes, with total thicknesses that vary from a maximum value on slopes inclined less than 30A degrees to near zero thickness on slopes inclined greater than 50A degrees. This distribution of cover thickness influences the stratigraphical setting and leads to downward thinning and the pinching out of pyroclastic horizons. Three engineering geological settings were identified, in which most of the initial landslides that triggered debris flows occurred in May 1998 can be classified as (1) knickpoints, characterised by a downward progressive thinning of the pyroclastic mantle; (2) rocky scarps that abruptly interrupt the pyroclastic mantle; and (3) road cuts in the pyroclastic mantle that occur in a critical range of slope angle. Detailed topographic and stratigraphical surveys coupled with field and laboratory tests were conducted to define geometric, hydraulic and mechanical features of pyroclastic soil horizons in the source areas and to carry out hydrological numerical modelling of hillslopes under different rainfall conditions. The slope stability for three representative cases was calculated considering the real sliding surface of the initial landslides and the pore pressures during the infiltration process. The hydrological modelling of hillslopes demonstrated localised increase of pore pressure, up to saturation, where pyroclastic horizons with higher hydraulic conductivity pinch out and the thickness of pyroclastic mantle reduces or is interrupted. These results lead to the identification of a comprehensive hydrogeomorphological model of susceptibility to initial landslides that links morphological, stratigraphical and hydrological conditions. The calculation of intensities and durations of rainfall necessary for slope instability allowed the identification of deterministic hydrological thresholds that account for uncertainty in properties and observed rainfall intensities.
引用
收藏
页码:713 / 728
页数:16
相关论文
共 85 条
[2]  
[Anonymous], 2000, P EGS PLIN C MAR IT
[3]  
[Anonymous], P INT WORKSH OCC MEC
[4]  
[Anonymous], 2003, 341N119E CENTTC, P146
[5]  
[Anonymous], 2000, QUAD GEOL APPL
[6]  
[Anonymous], 2002, P 3 INT C UNSATURATE
[7]  
[Anonymous], 2005, INT S ADV EXPT UNSAT
[8]   Soil hydraulic behaviour of a selected benchmark soil involved in the landslide of Sarno 1998 [J].
Basile, A ;
Mele, G ;
Terribile, F .
GEODERMA, 2003, 117 (3-4) :331-346
[9]   Early warning of rainfall-induced shallow landslides and debris flows in the USA [J].
Baum, Rex L. ;
Godt, Jonathan W. .
LANDSLIDES, 2010, 7 (03) :259-272
[10]   Geotechnical characterisation of pyroclastic soils involved in huge flowslides [J].
Bilotta, Eduardo ;
Cascini, Leonardo ;
Foresta, Vito ;
Sorbino, Giuseppe .
GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2005, 23 (04) :365-402