The effect of Ce3+ cations on polyaniline morphology and electric properties

被引:3
作者
Abalyaeva, V. V. [1 ]
Dremova, N. N. [1 ]
Vershinin, N. N. [1 ]
机构
[1] Russian Acad Sci, Inst Problems Chem Phys, Chernogolovka 142432, Moscow Oblast, Russia
关键词
doping; morphology; nanostructure; polyaniline; MAGNETIC-FIELD; DOPED POLYANILINE; FILMS; POLYMERIZATION; NANOPARTICLES; IONS; ACID; NANOCOMPOSITES; CONDUCTIVITY; COMPOSITES;
D O I
10.1134/S1023193513090024
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Polyaniline (PANI) is synthesized in the potentiostatic pulse mode from an electrolyte containing Ce-2(SO4)(3). Cations Ce3+ are incorporated into the polymer composition during PANI redox transformations. It is shown that PANI in its conducting and dielectric forms contains different amounts of Ce3+ cations. Starting with the beginning of polymerization, the Ce3+ cations actively form the special polymer morphology as demonstrated by SEM images. The chief consequence of the formation of so well-developed uniform nanostructure is that the latter allows the dopant anions, cations, and protons to easily enter and leave it. This, in turn, results in the high electrochemical activity of this polymer and enhances the conductivity of PANI samples doped with Ce3+ cations as compared with those doped with only protons.
引用
收藏
页码:863 / 869
页数:7
相关论文
共 58 条
  • [11] Self-assembly LiFePO4/polyaniline composite cathode materials with inorganic acids as dopants for lithium-ion batteries
    Chen, Wei-Min
    Huang, Yun-Hui
    Yuan, Li-Xia
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2011, 660 (01) : 108 - 113
  • [12] Insight into the improvement of rate capability and cyclability in LiFePO4/polyaniline composite cathode
    Chen, Wei-Min
    Qie, Long
    Yuan, Li-Xia
    Xia, Sheng-An
    Hu, Xian-Luo
    Zhang, Wu-Xing
    Huang, Yun-Hui
    [J]. ELECTROCHIMICA ACTA, 2011, 56 (06) : 2689 - 2695
  • [13] POLYANILINE - PROTONIC ACID DOPING OF THE EMERALDINE FORM TO THE METALLIC REGIME
    CHIANG, JC
    MACDIARMID, AG
    [J]. SYNTHETIC METALS, 1986, 13 (1-3) : 193 - 205
  • [14] Doping of polyaniline by transition-metal salts
    Dimitriev, OP
    [J]. MACROMOLECULES, 2004, 37 (09) : 3388 - 3395
  • [15] High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support
    Fan, Li-Zhen
    Hu, Yong-Sheng
    Maier, Joachim
    Adelhelm, Philipp
    Smarsly, Bernd
    Antonietti, Markus
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (16) : 3083 - 3087
  • [16] Synthesis and characterization of photoconducting polyaniline-TiO2 nanocomposite
    Feng, W
    Sun, EH
    Fujii, A
    Wu, HC
    Niihara, K
    Yoshino, K
    [J]. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2000, 73 (11) : 2627 - 2633
  • [17] VIBRATIONAL-SPECTRA AND STRUCTURE OF POLYANILINE
    FURUKAWA, Y
    UEDA, F
    HYODO, Y
    HARADA, I
    NAKAJIMA, T
    KAWAGOE, T
    [J]. MACROMOLECULES, 1988, 21 (05) : 1297 - 1305
  • [18] Preparation of nanocomposites of polyaniline and inorganic semiconductors
    Godovsky, DY
    Varfolomeev, AE
    Zaretsky, DF
    Chandrakanthi, RLN
    Kündig, A
    Weder, C
    Caseri, W
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2001, 11 (10) : 2465 - 2469
  • [19] Alkyd coatings containing polyanilines for corrosion protection of mild steel
    Goncalves, G. S.
    Baldissera, A. F.
    Rodrigues, L. F., Jr.
    Martini, E. M. A.
    Ferreira, C. A.
    [J]. SYNTHETIC METALS, 2011, 161 (3-4) : 313 - 323
  • [20] Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors
    Guan, Hui
    Fan, Li-Zhen
    Zhang, Hongchang
    Qu, Xuanhui
    [J]. ELECTROCHIMICA ACTA, 2010, 56 (02) : 964 - 968