Systole and inradius non-compact hyperbolic manifolds

被引:5
|
作者
Gendulphe, Matthieu [1 ]
机构
[1] Univ Fribourg, Dept Math, CH-1700 Fribourg, Perolles, Switzerland
关键词
DISCRETE-GROUPS; INJECTIVITY RADIUS; VOLUME; SUBGROUPS; CONSTANT; BALL; ISOMETRIES; PACKING; SPACES;
D O I
10.2140/gt.2015.19.2039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We bound two global invariants of cusped hyperbolic manifolds: the length of the shortest closed geodesic (the systole), and the radius of the biggest embedded ball (the inradius). We give an upper bound for the systole, expressed in terms of the dimension and simplicial volume. We find a positive lower bound on the inradius independent of the dimension. These bounds are sharp in dimension 3, realized by the Gieseking manifold. They provide a new characterization of this manifold.
引用
收藏
页码:2039 / 2080
页数:42
相关论文
共 50 条
  • [1] EMBEDDINGS OF NON-COMPACT MANIFOLDS
    MAXWELL, JW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (04): : A453 - A453
  • [2] Localization of supersymmetric field theories on non-compact hyperbolic three-manifolds
    Benjamin Assel
    Dario Martelli
    Sameer Murthy
    Daisuke Yokoyama
    Journal of High Energy Physics, 2017
  • [3] Localization of supersymmetric field theories on non-compact hyperbolic three-manifolds
    Assel, Benjamin
    Martelli, Dario
    Murthy, Sameer
    Yokoyama, Daisuke
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (03):
  • [4] Optimal transportation on non-compact manifolds
    Albert Fathi
    Alessio Figalli
    Israel Journal of Mathematics, 2010, 175 : 1 - 59
  • [5] Boundaries of non-compact harmonic manifolds
    Zimmer, Andrew M.
    GEOMETRIAE DEDICATA, 2014, 168 (01) : 339 - 357
  • [6] ELLIPTICAL OPERATORS ON NON-COMPACT MANIFOLDS
    PAQUET, L
    JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 50 (03) : 267 - 284
  • [7] NON-COMPACT EINSTEIN MANIFOLDS WITH SYMMETRY
    Boehm, Christoph
    Lafuente, Ramiro A.
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 36 (03) : 591 - 651
  • [8] Boundaries of non-compact harmonic manifolds
    Andrew M. Zimmer
    Geometriae Dedicata, 2014, 168 : 339 - 357
  • [9] Subvarieties in non-compact hyperkahler manifolds
    Verbitsky, M
    MATHEMATICAL RESEARCH LETTERS, 2004, 11 (04) : 413 - 418
  • [10] Non-compact manifolds with Killing spinors
    Rugina, C.
    Ludu, A.
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 151