GENERALIZED HENON MAPS AND SMALE HORSESHOES OF NEW TYPES

被引:10
|
作者
Gonchenko, Sergey [1 ]
Li, Ming-Chia [2 ]
Malkin, Mikhail [3 ]
机构
[1] Nizhnii Novgorod State Univ, Res Inst Appl Math & Cybernet, Nizhnii Novgorod, Russia
[2] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 300, Taiwan
[3] Nizhnii Novgorod State Univ, Dept Math & Mech, Nizhnii Novgorod, Russia
来源
关键词
Henon map; Smale horseshoe; half-orientable horseshoe; hyperbolic dynamics; nonwandering set; singular bifurcation;
D O I
10.1142/S0218127408022238
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study hyperbolic dynamics and bifurcations for generalized Henon maps in the form (x) over bar = y, (y) over bar = gamma y(1 - y) - bx + alpha xy (with b, alpha small and gamma > 4). Hyperbolic horseshoes with alternating orientation, called half-orientable horseshoes, are proved to represent the nonwandering set of the maps in certain parameter regions. We show that there are infinitely many classes of such horseshoes with respect to the local topological conjugacy. We also study transitions from the usual orientable and nonorientable horseshoes to half-orientable ones (and vice versa) as parameters vary.
引用
收藏
页码:3029 / 3052
页数:24
相关论文
共 50 条
  • [41] NEW ASPECTS OF INTEGRABILITY OF GENERALIZED HENON-HEILES SYSTEMS
    SARLET, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (22): : 5245 - 5251
  • [42] Smale horseshoes and chaos in discretized perturbed NLS systems (I) - Poincare map
    Gao, P
    Guo, BL
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2005, 26 (11) : 1391 - 1401
  • [43] Horseshoes for a Generalized Markus–Yamabe Example
    Salvador Addas-Zanata
    Bernardo Gomes
    Qualitative Theory of Dynamical Systems, 2011, 10 : 327 - 332
  • [44] Computing Complex Horseshoes by Means of Piecewise Maps
    Lopez, Alvaro G.
    Daza, Alvar
    Seoane, Jesus M.
    Sanjuan, Miguel A. F.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (12):
  • [45] Smale Horseshoes and Symbolic Dynamics in the Buck-Boost DC-DC Converter
    Wang, Yanfen
    Yang, Ru
    Zhang, Bo
    Hu, Wei
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (01) : 800 - 809
  • [46] The solenoid and holomorphic motionsfor Henon maps
    Mummert, Philip P.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (06) : 2739 - 2761
  • [47] Structure of partially hyperbolic Henon maps
    Lyubich, Mikhail
    Peters, Han
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (09) : 3075 - 3128
  • [48] Henon-Devaney like maps
    Leal, Bladismir
    Munoz, Sergio
    NONLINEARITY, 2021, 34 (05) : 2878 - 2896
  • [49] Complicated behavior in cubic Henon maps
    Anastassiou, S.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 207 (02) : 572 - 578
  • [50] A Note About Pruning and Henon Maps
    Mendoza, Valentin
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2013, 12 (02) : 443 - 448