On the Rockafellar theorem for Φγ(.,.)-monotone multifunctions

被引:1
作者
Rolewicz, S [1 ]
机构
[1] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
关键词
Phi(gamma(; ))-subdifferentiability; cyclic Phi(gamma(; ))-monotone multifunctions;
D O I
10.4064/sm172-2-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be an arbitrary set, and gamma : X x X --> R any function. Let Phi be a family of real-valued functions defined on X. Let Gamma : X --> 2(Phi) be a cyclic Phi(gamma(., .)) -monotone multifunction with non-empty values. It is shown that the following generalization of the Rockafellar theorem holds. There is a function f : X --> R such that Gamma is contained in the Phi gamma((.,.))-subdifferential of f, Gamma(x) subset of partial derivative(Phi)(gamma(.,.))f\x.
引用
收藏
页码:197 / 202
页数:6
相关论文
共 24 条
[1]  
[Anonymous], 1980, SOVIET MATH DOKL
[2]  
[Anonymous], MATH APPL
[3]  
Borwein JM., 2005, TECHNIQUES VARIATION
[4]  
EKELAND I, 1975, CR ACAD SCI A MATH, V281, P219
[5]   APPROXIMATE SUBDIFFERENTIALS AND APPLICATIONS .2. [J].
IOFFE, AD .
MATHEMATIKA, 1986, 33 (65) :111-128
[7]   APPROXIMATE SUBDIFFERENTIALS AND APPLICATIONS .3. THE METRIC THEORY [J].
IOFFE, AD .
MATHEMATIKA, 1989, 36 (71) :1-38
[8]   PROXIMAL ANALYSIS AND APPROXIMATE SUBDIFFERENTIALS [J].
IOFFE, AD .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1990, 41 :175-192
[9]  
IOFFE AD, 2000, USP MAT NAUK, V55, P104
[10]   ε-subdifferential and ε-monotonicity [J].
Jofre, A ;
Luc, DT ;
Thera, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 33 (01) :71-90