Highly stretchable, self-healing, and degradable ionic conductive cellulose hydrogel for human motion monitoring

被引:29
|
作者
Li, Xing [1 ]
Ma, Yinghui [1 ]
Li, Dacheng [1 ]
Lu, Shaorong [1 ]
Li, Yuqi [1 ]
Li, Ziwei [1 ]
机构
[1] Guilin Univ Technol, Sch Mat Sci & Engn, Key Lab New Proc Technol Nonferrous Met & Mat, Minist Educ, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Self; -healing; Stretchable; Sisal nanocellulose crystals; Ionic conductive hydrogel; Strain sensor; NANOCOMPOSITE HYDROGELS; MECHANICAL-PROPERTIES; STRAIN; COMPOSITE; NANOCRYSTALS; CHITOSAN; TOUGH; FILM;
D O I
10.1016/j.ijbiomac.2022.11.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Self-healing biomass-based conductive hydrogels are applied as flexible strain sensors for wearable devices and human movement monitoring. Cellulose is the most abundant biomass-based materials and exhibits excellent toughness, dispersion and degradability. In this paper, nanocellulose crystals (NCCs) prepared from sisal, used as reinforcing fillers were coated with tannic acid (TA) to prepare inexpensive bio-nanocomposite hydrogels that also included polyvinyl alcohol, okra polysaccharide (OP), and borax. These hydrogels exhibit excellent selfhealing and mechanical properties with the maximum elongation, toughness, and self-healing efficiency (9 min) of 1426.2 %, 264.4 kJ/m3, and 62.1 %, respectively. A fabricated hydrogel strain sensor was successfully used to detect and monitor various human movements such as wrist bending, elbow bending, and slight changes in facial expression. In addition, this sensor possessed excellent durability and good working stability after repeated circulation. The nanocomposite hydrogel synthesized in this work utilized natural polysaccharide to manufacture flexible functional materials with good application prospects in the field of flexible sensors.
引用
收藏
页码:1530 / 1538
页数:9
相关论文
共 50 条
  • [1] Highly Stretchable and Self-Healing Strain Sensor Based on Gellan Gum Hybrid Hydrogel for Human Motion Monitoring
    Liu, Sijun
    Qiu, Yan
    Yu, Wei
    Zhang, Hongbin
    ACS APPLIED POLYMER MATERIALS, 2020, 2 (03): : 1325 - 1334
  • [2] Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application
    Jiao, Yue
    Lu, Ya
    Lu, Kaiyue
    Yue, Yiying
    Xu, Xinwu
    Xiao, Huining
    Li, Jian
    Han, Jingquan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 597 : 171 - 181
  • [3] Facile fabrication of a printable conductive self-healing hydrogel for human motion and electrocardiogram monitoring
    Xing, Ruizhe
    Huang, Renliang
    Su, Rongxin
    Qi, Wei
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (23) : 11063 - 11070
  • [4] Transparent, highly stretchable, adhesive, and sensitive ionic conductive hydrogel strain sensor for human motion monitoring
    Ren, Jie
    Li, Meng
    Li, Ruirui
    Wang, Xuemiao
    Li, Yan
    Yang, Wu
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 652
  • [5] Transparent, highly stretchable, adhesive, and sensitive ionic conductive hydrogel strain sensor for human motion monitoring
    Ren, Jie
    Li, Meng
    Li, Ruirui
    Wang, Xuemiao
    Li, Yan
    Yang, Wu
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 652
  • [6] Stretchable, Conductive, and Self-Healing Hydrogel with Super Metal Adhesion
    Wang, Yimeng
    Huang, Furong
    Chen, Xibang
    Wang, Xiao-Wei
    Zhang, Wen-Bin
    Peng, Jing
    Li, Jiuqiang
    Zhai, Maolin
    CHEMISTRY OF MATERIALS, 2018, 30 (13) : 4289 - 4297
  • [7] A Transparent, Self-Healing, Highly Stretchable Ionic Conductor
    Cao, Yue
    Morrissey, Timothy G.
    Acome, Eric
    Allec, Sarah I.
    Wong, Bryan M.
    Keplinger, Christoph
    Wang, Chao
    ADVANCED MATERIALS, 2017, 29 (10)
  • [8] Self-healing, environmentally stable and adhesive hydrogel sensor with conductive cellulose nanocrystals for motion monitoring and character recognition
    Wang, Yafang
    Yao, Anrong
    Dou, Baojie
    Huang, Cuimin
    Yang, Lin
    Liang, Juan
    Lan, Jianwu
    Lin, Shaojian
    CARBOHYDRATE POLYMERS, 2024, 332
  • [9] Highly viscoelastic, stretchable, conductive, and self-healing strain sensors based on cellulose nanofiber-reinforced polyacrylic acid hydrogel
    Yue Jiao
    Kaiyue Lu
    Ya Lu
    Yiying Yue
    Xinwu Xu
    Huining Xiao
    Jian Li
    Jingquan Han
    Cellulose, 2021, 28 : 4295 - 4311
  • [10] Highly viscoelastic, stretchable, conductive, and self-healing strain sensors based on cellulose nanofiber-reinforced polyacrylic acid hydrogel
    Jiao, Yue
    Lu, Kaiyue
    Lu, Ya
    Yue, Yiying
    Xu, Xinwu
    Xiao, Huining
    Li, Jian
    Han, Jingquan
    CELLULOSE, 2021, 28 (07) : 4295 - 4311