Self-stabilizing algorithms for minimal global powerful alliance sets in graphs

被引:5
作者
Yahiaoui, Said [1 ,2 ]
Belhoul, Yacine [1 ,3 ]
Haddad, Mohammed [1 ]
Kheddouci, Hamamache [1 ]
机构
[1] Univ Lyon 1, LIRIS, CNRS, UMR5205, F-69622 Villeurbanne, France
[2] Univ A Mira, Dept Informat, Bejaia 06000, Algeria
[3] CERIST, Algiers 16030, Algeria
关键词
Self-stabilizing algorithms; Graph algorithms; Global powerful alliance; Distributed algorithms;
D O I
10.1016/j.ipl.2013.03.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a self-stabilizing distributed algorithm for the minimal global powerful alliance set problem in an arbitrary graph. Then, we give self-stabilizing algorithms for some generalizations of the problem. Using an unfair distributed scheduler, the proposed algorithms converge in O (mn) moves starting from an arbitrary state. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:365 / 370
页数:6
相关论文
共 20 条
[1]  
[Anonymous], CAN HYDR C P
[2]   An efficient self-stabilizing distance-2 coloring algorithm [J].
Blair, Jean R. S. ;
Manne, Fredrik .
THEORETICAL COMPUTER SCIENCE, 2012, 444 :28-39
[3]   Powerful alliances in graphs [J].
Brigham, Robert C. ;
Dutton, Ronald D. ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. .
DISCRETE MATHEMATICS, 2009, 309 (08) :2140-2147
[4]  
Dean B.C., 2007, CONGR NUMER CONF J N, V187, P76
[5]  
Devismes S., 2011, 2 INT C NETW COMP IC, P30
[6]   A SILENT SELF-STABILIZING ALGORITHM FOR FINDING CUT- NODES AND BRIDGES [J].
Devismes, Stephane .
PARALLEL PROCESSING LETTERS, 2005, 15 (1-2)
[7]   SELF-STABILIZING SYSTEMS IN SPITE OF DISTRIBUTED CONTROL [J].
DIJKSTRA, EW .
COMMUNICATIONS OF THE ACM, 1974, 17 (11) :643-644
[8]  
Dolev S., 2000, Self-Stabilization
[9]  
Dubois S., 2011, TECHNICAL REPORT
[10]  
Fernau H., 2007, 33 INT C CURR TRENDS, P61