Generalized addition formulae for theta functions

被引:0
作者
González, EG [1 ]
González-Martínez, C [1 ]
机构
[1] Univ Salamanca, Dept Matemat, E-37008 Salamanca, Spain
来源
Geometry of Riemann Surfaces and Abelian Varieties | 2006年 / 397卷
关键词
theta functions; addition formulae; theta constants of order n; theta groups;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give the addition formula for the n-th order theta functions and a generalization of the multiplication and duplication formulae. From these we obtain identities between the theta constants of order n, and also the generalized Riemann identity.
引用
收藏
页码:89 / 104
页数:16
相关论文
共 50 条
  • [21] Theta functions and Eisenstein series
    Bhaskar Srivastava
    Boletín de la Sociedad Matemática Mexicana, 2015, 21 (2) : 189 - 203
  • [22] On Faltings parabolic theta functions
    Sanjay Amrutiya
    Archiv der Mathematik, 2016, 106 : 229 - 235
  • [23] Theta functions and Eisenstein series
    Srivastava, Bhaskar
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2015, 21 (02): : 189 - 203
  • [24] On the Products of Three Theta Functions
    Li-Chien Shen
    The Ramanujan Journal, 1999, 3 : 343 - 357
  • [25] Theta Functions and Brownian Motion
    Duncan, Tyrone E.
    JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (01) : 81 - 89
  • [26] Nonabelian theta functions of positive genus
    Boysal, Arzu
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (12) : 4201 - 4209
  • [27] Wronskians of theta functions and series for 1/π
    Berkovich, Alex
    Chan, Heng Huat
    Schlosser, Michael J.
    ADVANCES IN MATHEMATICS, 2018, 338 : 266 - 304
  • [28] Sixth order mock theta functions
    Berndt, Bruce C.
    Chan, Song Heng
    ADVANCES IN MATHEMATICS, 2007, 216 (02) : 771 - 786
  • [29] Differential equations for septic theta functions
    Tim Huber
    Danny Lara
    The Ramanujan Journal, 2015, 38 : 211 - 226
  • [30] Exponential Integral Representations of Theta Functions
    Andrew Bakan
    Håkan Hedenmalm
    Computational Methods and Function Theory, 2020, 20 : 591 - 621