Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms

被引:198
|
作者
Gayen, Amiya [1 ]
Pourghasemi, Hamid Reza [2 ,3 ]
Saha, Sunil [1 ]
Keesstra, Saskia [4 ,5 ]
Bai, Shibiao [2 ]
机构
[1] Univ Gour Banga, Dept Geog, Malda, W Bengal, India
[2] Nanjing Normal Univ, Coll Marine Sci & Engn, Nanjing 210023, Jiangsu, Peoples R China
[3] Shiraz Univ, Dept Nat Resources & Environm Engn, Coll Agr, Shiraz, Iran
[4] Wageningen Environm Res, Team Soil Water & Land Use, Droevendaalsesteeg 3, NL-6708 PB Wageningen, Netherlands
[5] Univ Newcastle, Civil Surveying & Environm Engn, Callaghan, NSW 2308, Australia
基金
中国国家自然科学基金;
关键词
Gully erosion; Flexible discriminant analysis; Multivariate additive regression splines; Support vector machine; Random forest; Geospatial modelling; ADAPTIVE REGRESSION SPLINES; EVIDENTIAL BELIEF FUNCTION; SUPPORT VECTOR MACHINE; DATA-MINING TECHNIQUES; LANDSLIDE SUSCEPTIBILITY; LOGISTIC-REGRESSION; SOIL-EROSION; CONDITIONAL-PROBABILITY; GOLESTAN PROVINCE; FREQUENCY RATIO;
D O I
10.1016/j.scitotenv.2019.02.436
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Gully erosion is one of the most effective drivers of sediment removal and runoff from highland areas to valley floors and stable channels, where continued off-site effects of water erosion occur. Gully initiation and development is a natural process that greatly impacts natural resources, agricultural activities, and environmental quality as it promotes land and water degradation, ecosystem disruption, and intensification of hazards. In this research, an attempt is made to produce gully erosion susceptibility maps for the management of hazard-prone areas in the Pathro River Basin of India using four well-known machine learning models, namely, multivariate additive regression splines (MARS), flexible discriminant analysis (FDA), random forest ( RF), and support vector machine (SVM). To support this effort, observations from 174 gully erosion sites were made using field surveys. Of the 174 observations, 70% were randomly split into a training data set to build susceptibility models and the remaining 30% were used to validate the newly built models. Twelve gully erosion conditioning factors were assessed to find the areas most susceptible to gully erosion. The predisposing factors were slope gradient, altitude, plan curvature, slope aspect, land use, slope length (LS), topographical wetness index (TWI), drainage density, soil type, distance from the river, distance from the lineament, and distance from the road. Finally, the results from the four applied models were validated with the help of ROC (Receiver Operating Characteristics) curves. The AUC value for the RF model was calculated to be 96.2%, whereas for those for the FDA, MARS, and SVM models were 842%, 91.4%, and 88.3%, respectively. The AUC results indicated that the random forest model had the highest prediction accuracy, followed by the MARS, SVM, and FDA models. However, it could be concluded that all the machine learning models performed well according to their prediction accuracy. The produced GESMs can be very useful for land managers and policy makers as they can be used to initiate remedial measures and erosion hazard mitigation in prioritized areas. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:124 / 138
页数:15
相关论文
共 50 条
  • [1] Gully Erosion Susceptibility Assessment Using Different Machine Learning Algorithms: A Case Study of Shazand Watershed in Iran
    Majid Mohammady
    Aliakbar Davudirad
    Environmental Modeling & Assessment, 2024, 29 : 249 - 261
  • [2] Gully Erosion Susceptibility Assessment Using Different Machine Learning Algorithms: A Case Study of Shazand Watershed in Iran
    Mohammady, Majid
    Davudirad, Aliakbar
    ENVIRONMENTAL MODELING & ASSESSMENT, 2024, 29 (02) : 249 - 261
  • [3] Gully Erosion Management Machine learning algorithms
    Fernandes, Michelle
    Patel, Lavkush
    Lakshman, Kshama
    Mullasseri, Sileesh
    Verma, Sudhir
    David, T. Divya
    Singh, Archana
    Saalim, Syed Mohammad
    Jadav, Ravindra
    Vinayak, Vandana
    CURRENT SCIENCE, 2019, 116 (12): : 1944 - 1944
  • [4] Gully Erosion Susceptibility Assessment in the Kondoran Watershed Using Machine Learning Algorithms and the Boruta Feature Selection
    Ahmadpour, Hamed
    Bazrafshan, Ommolbanin
    Rafiei-Sardooi, Elham
    Zamani, Hossein
    Panagopoulos, Thomas
    SUSTAINABILITY, 2021, 13 (18)
  • [5] Prediction of gully erosion susceptibility mapping using novel ensemble machine learning algorithms
    Arabameri, Alireza
    Pal, Subodh Chandra
    Costache, Romulus
    Saha, Asish
    Rezaie, Fatemeh
    Danesh, Amir Seyed
    Pradhan, Biswajeet
    Lee, Saro
    Nhat-Duc Hoang
    GEOMATICS NATURAL HAZARDS & RISK, 2021, 12 (01) : 469 - 498
  • [7] Modeling gully erosion susceptibility in Phuentsholing, Bhutan using deep learning and basic machine learning algorithms
    Saha, Sunil
    Sarkar, Raju
    Thapa, Gautam
    Roy, Jagabandhu
    ENVIRONMENTAL EARTH SCIENCES, 2021, 80 (08)
  • [8] Modeling gully erosion susceptibility in Phuentsholing, Bhutan using deep learning and basic machine learning algorithms
    Sunil Saha
    Raju Sarkar
    Gautam Thapa
    Jagabandhu Roy
    Environmental Earth Sciences, 2021, 80
  • [9] Gully erosion susceptibility prediction in Mollisols using machine learning models
    Wang, Y.
    Zhang, Y.
    Chen, H.
    JOURNAL OF SOIL AND WATER CONSERVATION, 2023, 78 (05) : 385 - 396
  • [10] Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion
    Rahmati, Omid
    Tahmasebipour, Nasser
    Haghizadeh, Ali
    Pourghasemi, Hamid Reza
    Feizizadeh, Bakhtiar
    GEOMORPHOLOGY, 2017, 298 : 118 - 137