Algebraic Methods in the Congested Clique

被引:56
作者
Censor-Hillel, Keren [1 ]
Kaski, Petteri [2 ,3 ]
Korhonen, Janne H. [2 ,4 ]
Lenzen, Christoph [5 ]
Paz, Ami [1 ]
Suomela, Jukka [2 ,3 ]
机构
[1] Technion, Haifa, Israel
[2] Helsinki Inst Informat Technol, Helsinki, Finland
[3] Aalto Univ, Espoo, Finland
[4] Univ Helsinki, Helsinki, Finland
[5] MPI Informat, Saarbrucken, Germany
来源
PODC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING | 2015年
基金
欧洲研究理事会;
关键词
Distributed computing; congested clique model; lower bounds; matrix multiplication; subgraph detection; distance computation; PAIRS SHORTEST PATHS; TIME ALGORITHM; MULTIPLICATION; CONSTRUCTION; COMPLEXITY; BOUNDS; SETS;
D O I
10.1145/2767386.2767414
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work, we use algebraic methods for studying distance computation and subgraph detection tasks in the congested clique model. Specifically, we adapt parallel matrix multiplication implementations to the congested clique, obtaining an O(n(1-2/omega)) round matrix multiplication algorithm, where omega < 2.3728639 is the exponent of matrix multiplication. In conjunction with known techniques from centralised algorithmics, this gives significant improvements over previous best upper bounds in the congested clique model. The highlight results include: - triangle and 4-cycle counting in O(n(0.158)) rounds, improving upon the O(n(1/3)) triangle detection algorithm of Dolev et al. [DISC 2012], - a (1+o(1))-approximation of all-pairs shortest paths in O(n(0.158)) rounds, improving upon the <(O)over tilde>(n(1/2))-round (2+o(1))-approximation algorithm of Nanongkai [STOC 2014], and - computing the girth in O(n(0.158)) rounds, which is the first non-trivial solution in this model. In addition, we present a novel constant-round combinatorial algorithm for detecting 4-cycles.
引用
收藏
页码:143 / 152
页数:10
相关论文
共 77 条
[1]   A three-dimensional approach to parallel matrix multiplication [J].
Agarwal, RC ;
Balle, SM ;
Gustavson, FG ;
Joshi, M ;
Palkar, P .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1995, 39 (05) :575-582
[2]   COMMUNICATION COMPLEXITY OF PRAMS [J].
AGGARWAL, A ;
CHANDRA, AK ;
SNIR, M .
THEORETICAL COMPUTER SCIENCE, 1990, 71 (01) :3-28
[3]  
Aho A. V., 1974, The design and analysis of computer algorithms
[4]  
Alexandre Tiskin, 1999, THESIS
[5]   Derandomization, witnesses for Boolean matrix multiplication and construction of perfect hash functions [J].
Alon, N ;
Naor, M .
ALGORITHMICA, 1996, 16 (4-5) :434-449
[6]   COLOR-CODING [J].
ALON, N ;
YUSTER, R ;
ZWICK, U .
JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY, 1995, 42 (04) :844-856
[7]   Finding and counting given length cycles [J].
Alon, N ;
Yuster, R ;
Zwick, U .
ALGORITHMICA, 1997, 17 (03) :209-223
[8]  
[Anonymous], 2002, LECT DISCRETE GEOMET
[9]  
Ballard G., 2012, P 24 ACM S PAR ALG A, P193
[10]   Communication Costs of Strassen's Matrix Multiplication [J].
Ballard, Grey ;
Demmel, James ;
Holtz, Olga ;
Schwartz, Oded .
COMMUNICATIONS OF THE ACM, 2014, 57 (02) :107-114