Arithmetic moduli and lifting of Enriques surfaces

被引:22
作者
Liedtke, Christian [1 ]
机构
[1] Tech Univ Munich, Zentrum Math M11, D-85748 Garching, Germany
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2015年 / 706卷
关键词
ALGEBRAIC-SURFACES; PROJECTIVE MODELS; AUTOMORPHISMS; DEFORMATIONS; CURVES; SPACE;
D O I
10.1515/crelle-2013-0068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct the moduli space of Enriques surfaces in positive characteristic and eventually over the integers, and determine its local and global structure. As an application, we show lifting of Enriques surfaces to characteristic zero. The key observation is that the canonical double cover of an Enriques surface is birational to the complete intersection of three quadrics in P-5, even in characteristic 2.
引用
收藏
页码:35 / 65
页数:31
相关论文
共 36 条
[1]  
[Anonymous], 2000, ERGEB MATH GRENZGEB
[2]  
[Anonymous], 2012, PREPRINT
[3]  
[Anonymous], 1971, Lecture Notes in Mathematics
[4]  
Arbarello E., 1985, GRUNDLEHREN MATH WIS, VI
[6]   ALGEBRAIC CONSTRUCTION OF BRIESKORNS RESOLUTIONS [J].
ARTIN, M .
JOURNAL OF ALGEBRA, 1974, 29 (02) :330-348
[7]   VERSAL DEFORMATIONS AND ALGEBRAIC STACKS [J].
ARTIN, M .
INVENTIONES MATHEMATICAE, 1974, 27 (03) :165-189
[8]   AUTOMORPHISMS OF ENRIQUES SURFACES [J].
BARTH, W ;
PETERS, C .
INVENTIONES MATHEMATICAE, 1983, 73 (03) :383-411
[9]  
Barth W. P., 2004, COMPACT COMPLEX SURF, V4
[10]   ENRIQUES CLASSIFICATION OF SURFACES IN CHAR-P .3. [J].
BOMBIERI, E ;
MUMFORD, D .
INVENTIONES MATHEMATICAE, 1976, 35 :197-232