Lower bounds for generalized Ginzburg-Landau functionals

被引:140
作者
Jerrard, RL [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
Ginzburg-Landau functional; lower bounds; energy concentration; compactness;
D O I
10.1137/S0036141097300581
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study properties of Ginzburg-Landau functionals I-U(epsilon)(.), defined for functions u is an element of W-1,W-n (U; R-n), where U subset of R-n. In particular, we establish lower bounds relating the energy I-U(epsilon)(u) to the Brouwer degree of u, and we prove under additional hypotheses that the energy concentrates on a small number of small sets. As a consequence we deduce some compactness theorems. Such estimates are useful in studying Ginzburg-Landau-type PDEs associated with the functional I-U(epsilon).
引用
收藏
页码:721 / 746
页数:26
相关论文
共 11 条
[1]   Topological methods for the Ginzburg-Landau equations [J].
Almeida, L ;
Bethuel, F .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (01) :1-49
[2]  
BETHUEL F, 1995, ANN I H POINCARE-AN, V12, P243
[3]  
Bethuel F., 1994, Progress in Nonlinear Differential Equations and their Applications, V13
[4]   QUANTIZATION EFFECT FOR DELTA-U=U(1 - VERTICAL-BAR-U-VERTICAL-BAR(2)) IN R(2) [J].
BREZIS, H ;
MERLE, F ;
RIVIERE, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 126 (01) :35-58
[5]  
Brezis H., 1995, SEL MATH, V1, P197, DOI 10.1007/BF01671566
[6]  
Han ZC, 1996, CALC VAR PARTIAL DIF, V4, P497
[7]  
Hong M.-C., 1996, ADV DIFFERENTIAL EQU, V1, P611
[8]  
Lin FH, 1996, COMMUN PUR APPL MATH, V49, P323
[9]  
LIN FH, 1997, VORTEX DYNAMICS NONL
[10]  
SANDIER E, 1997, LOWER BOUNDS ENERGY