Boundary conditions for thermal lattice Boltzmann equation method

被引:173
作者
Li, Like [1 ]
Mei, Renwei [1 ]
Klausner, James F. [1 ]
机构
[1] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA
关键词
Lattice Boltzmann equation (LBE); Convection-diffusion equation; Dirichlet boundary condition; Neumann boundary condition; Curved-boundary; CURVED BOUNDARY; BGK MODELS; FLOWS; SIMULATION; DISPERSION; CONVECTION; SCHEMES; FLUID;
D O I
10.1016/j.jcp.2012.11.027
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a thermal boundary condition treatment based on the "bounce-back" idea and interpolation of the distribution functions for both the Dirichlet and Neumann (normal derivative) conditions in the thermal lattice Boltzmann equation (TLBE) method. The coefficients for the distribution functions involved are determined to satisfy the Dirichlet or Neumann condition with second-order accuracy. For the Dirichlet condition there is an adjustable parameter in the treatment and three particular schemes are selected for demonstration, while for the Neumann condition the second-order accurate scheme is unique. When applied to inclined or curved boundaries, the Dirichlet condition treatment can be directly used, while the Neumann condition given in the normal direction of the boundary should be converted into derivative conditions in the discrete velocity directions of the TLBE model. A spatially coupled formula relating the boundary temperature, boundary normal heat flux, and the distribution functions near the boundary is thus derived for the Neumann problems on curved boundaries. The applicability and accuracy of the present boundary treatments are examined with several numerical tests for which analytical solutions are available, including the 2-dimensional (2-D) steady-state channel flow, the 1-D transient heat conduction in an inclined semi-infinite solid, the 2-D steady-state and transient heat conduction inside a circle and the 3-D steady-state circular pipe flow. While the Dirichlet condition treatment leads to second-order accuracy for the temperature field, it only gives a first-order accurate boundary heat flux because of the irregularity of the cuts by the curved boundary with the lattices. With the Neumann condition on the curved boundary, the accuracy for the temperature field obtained is first-order. When the tangential temperature gradient on the boundary is decoupled, second-order convergence of the temperature field can be obtained with Neumann conditions. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:366 / 395
页数:30
相关论文
共 48 条
[1]   Lattice-Boltzmann Method for Complex Flows [J].
Aidun, Cyrus K. ;
Clausen, Jonathan R. .
ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 :439-472
[2]   LATTICE BOLTZMANN THERMOHYDRODYNAMICS [J].
ALEXANDER, FJ ;
CHEN, S ;
STERLING, JD .
PHYSICAL REVIEW E, 1993, 47 (04) :R2249-R2252
[3]   Asymptotic analysis of multiple-relaxation-time lattice Boltzmann schemes for mixture modeling [J].
Asinari, Pietro .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (07) :1392-1407
[4]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[5]   Momentum transfer of a Boltzmann-lattice fluid with boundaries [J].
Bouzidi, M ;
Firdaouss, M ;
Lallemand, P .
PHYSICS OF FLUIDS, 2001, 13 (11) :3452-3459
[6]   RECOVERY OF THE NAVIER-STOKES EQUATIONS USING A LATTICE-GAS BOLTZMANN METHOD [J].
CHEN, HD ;
CHEN, SY ;
MATTHAEUS, WH .
PHYSICAL REVIEW A, 1992, 45 (08) :R5339-R5342
[7]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[8]   On boundary conditions in lattice Boltzmann methods [J].
Chen, SY ;
Martinez, D ;
Mei, RW .
PHYSICS OF FLUIDS, 1996, 8 (09) :2527-2536
[9]   THERMAL LATTICE BHATNAGAR-GROSS-KROOK MODEL WITHOUT NONLINEAR DEVIATIONS IN MACRODYNAMIC EQUATIONS [J].
CHEN, Y ;
OHASHI, H ;
AKIYAMA, M .
PHYSICAL REVIEW E, 1994, 50 (04) :2776-2783
[10]   Multiple-relaxation-time lattice Boltzmann models in three dimensions [J].
d'Humières, D ;
Ginzburg, I ;
Krafczyk, M ;
Lallemand, P ;
Luo, LS .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 360 (1792) :437-451