Effect of Mode Coupling on Signal Processing Complexity in Mode-Division Multiplexing

被引:123
作者
Arik, Sercan O. [1 ]
Askarov, Daulet [1 ]
Kahn, Joseph M. [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, EL Ginzton Lab, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
DSP complexity; equalization; MIMO; mode coupling; mode-division multiplexing; multimode coherent receiver; multimode fiber; receiver signal processing; FREQUENCY-DOMAIN EQUALIZATION; COHERENT DETECTION; PRINCIPAL MODES; MULTIMODE FIBER; TRANSMISSION; DISPERSION; DESIGN; ALGORITHMS; LIMITS;
D O I
10.1109/JLT.2012.2234083
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mode-division multiplexing systems employ multi-input multi-output (MIMO) equalization to compensate for chromatic dispersion (CD), modal dispersion (MD) and modal crosstalk. The computational complexity of MIMO equalization depends on the number of modes and on the group delay (GD) spread arising from CD and MD. Assuming the strong-coupling regime, in which the total system length far exceeds the correlation length of modal fields, we quantify the GD spread arising from MD, showing that it can be reduced significantly by mode coupling. We evaluate the computational complexity of various MIMO single-carrier equalizers, considering separate or combined equalization of CD and MD, in the time or frequency domain. We present numerical examples for the optimally designed graded-index depressed-cladding fibers supporting, D = 6, 12, 20 or 30 modes in two polarizations. Assuming a 2000-km system length, a 1-km correlation length, and a combined CD+MD frequency-domain equalizer, the complexity (in complex multiplications per two-dimensional symbol) is a factor 1.4, 1.7, 2.2, 2.8 times higher for D = 6, 12, 20, 30 than for polarization-multiplexed systems in standard single-mode fiber (D = 2).
引用
收藏
页码:423 / 431
页数:9
相关论文
共 54 条
[1]  
[Anonymous], 1977, DISCRETE TIME SIGNAL
[2]  
[Anonymous], EUR C OPT COMM VIENN
[3]   Design of Transmission Fibers and Doped Fiber Amplifiers for Mode-Division Multiplexing [J].
Askarov, Daulet ;
Kahn, Joseph M. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2012, 24 (21) :1945-1948
[4]   Mode-division multiplexed transmission with inline few-mode fiber amplifier [J].
Bai, Neng ;
Ip, Ezra ;
Huang, Yue-Kai ;
Mateo, Eduardo ;
Yaman, Fatih ;
Li, Ming-Jun ;
Bickham, Scott ;
Ten, Sergey ;
Linares, Jesus ;
Montero, Carlos ;
Moreno, Vicente ;
Prieto, Xesus ;
Tse, Vincent ;
Chung, Kit Man ;
Lau, Alan Pak Tao ;
Tam, Hwa-Yaw ;
Lu, Chao ;
Luo, Yanhua ;
Peng, Gang-Ding ;
Li, Guifang ;
Wang, Ting .
OPTICS EXPRESS, 2012, 20 (03) :2668-2680
[5]  
Corning, 2001, SMF 28 OPTICAL FIBER
[6]   Analytical treatment of polarization-mode dispersion in single-mode fibers by means of the backscattered signal [J].
Corsi, F ;
Galtarossa, A ;
Palmieri, L .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1999, 16 (03) :574-583
[7]  
Dods S. R. A., 2006, P INT PHOT RES APPL
[8]   Opportunities to enhance multimode fiber links by application of overfilled launch [J].
Donlagic, D .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (11) :3526-3540
[9]   Capacity Trends and Limits of Optical Communication Networks [J].
Essiambre, Rene-Jean ;
Tkach, Robert W. .
PROCEEDINGS OF THE IEEE, 2012, 100 (05) :1035-1055
[10]   Capacity Limits of Optical Fiber Networks [J].
Essiambre, Rene-Jean ;
Kramer, Gerhard ;
Winzer, Peter J. ;
Foschini, Gerard J. ;
Goebel, Bernhard .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2010, 28 (04) :662-701