AD-NET: Age-adjust neural network for improved MCI to AD conversion prediction

被引:46
作者
Gao, Fei [1 ,2 ]
Yoon, Hyunsoo [1 ,2 ]
Xu, Yanzhe [1 ,2 ]
Goradia, Dhruman [3 ,4 ]
Luo, Ji [3 ,4 ]
Wu, Teresa [1 ,2 ]
Su, Yi [1 ,3 ,4 ]
机构
[1] Arizona State Univ, Sch Comp Informat Decis Syst Engn, Tempe, AZ 85287 USA
[2] Arizona State Univ, ASU Mayo Ctr Innovat Imaging, Tempe, AZ 85287 USA
[3] Banner Alzheimer Inst, 901 E Willetta St, Phoenix, AZ 85006 USA
[4] Arizona Alzheimers Consortium, Phoenix, AZ USA
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
Deep learning; Transfer learning; Biomarker; AD; MCI; MILD COGNITIVE IMPAIRMENT; ALZHEIMERS-DISEASE; FEATURE REPRESENTATION; DIAGNOSIS; CLASSIFICATION; NEUROSCIENCE; SELECTION;
D O I
10.1016/j.nicl.2020.102290
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
The prediction of Mild Cognitive Impairment (MCI) patients who are at higher risk converting to Alzheimer's Disease (AD) is critical for effective intervention and patient selection in clinical trials. Different biomarkers including neuroimaging have been developed to serve the purpose. With extensive methodology development efforts on neuroimaging, an emerging field is deep learning research. One great challenge facing deep learning is the limited medical imaging data available. To address the issue, researchers explore the use of transfer learning to extend the applicability of deep models on neuroimaging research for AD diagnosis and prognosis. Existing transfer learning models mostly focus on transferring the features from the pre-training into the fine-tuning stage. Recognizing the advantages of the knowledge gained during the pre-training, we propose an AD-NET (Age-adjust neural network) with the pre-training model serving two purposes: extracting and transferring features; and obtaining and transferring knowledge. Specifically, the knowledge being transferred in this research is an age-related surrogate biomarker. To evaluate the effectiveness of the proposed approach, AD-NET is compared with 8 classification models from literature using the same public neuroimaging dataset. Experimental results show that the proposed AD-NET outperforms the competing models in predicting the MCI patients at risk for conversion to the AD stage.
引用
收藏
页数:9
相关论文
共 49 条
[1]   Report of the task force on designing clinical trials in early (predementia) AD [J].
Aisen, P. S. ;
Andrieu, S. ;
Sampaio, C. ;
Carrillo, M. ;
Khachaturian, Z. S. ;
Dubois, B. ;
Feldman, H. H. ;
Petersen, R. C. ;
Siemers, E. ;
Doody, R. S. ;
Hendrix, S. B. ;
Grundman, M. ;
Schneider, L. S. ;
Schindler, R. J. ;
Salmon, E. ;
Potter, W. Z. ;
Thomas, R. G. ;
Salmon, D. ;
Donohue, M. ;
Bednar, M. M. ;
Touchon, J. ;
Vellas, B. .
NEUROLOGY, 2011, 76 (03) :280-286
[2]   2018 Alzheimer's disease facts and figures [J].
不详 .
ALZHEIMERS & DEMENTIA, 2018, 14 (03) :367-425
[3]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[4]   Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks [J].
Basaia, Silvia ;
Agosta, Federica ;
Wagner, Luca ;
Canu, Elisa ;
Magnani, Giuseppe ;
Santangelo, Roberto ;
Filippi, Massimo .
NEUROIMAGE-CLINICAL, 2019, 21
[5]  
Ben-Gal I, 2005, DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK, P131, DOI 10.1007/0-387-25465-X_7
[6]   Classification of MR Brain Images by Combination of Multi-CNNs for AD Diagnosis [J].
Cheng, Danni ;
Liu, Manhua ;
Fu, Jianliang ;
Wang, Yaping .
NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420
[7]   Fully Automatic Hippocampus Segmentation and Classification in Alzheimer's Disease and Mild Cognitive Impairment Applied on Data From ADNI [J].
Chupin, Marie ;
Gerardin, Emilie ;
Cuingnet, Remi ;
Boutet, Claire ;
Lemieux, Louis ;
Lehericy, Stephane ;
Benali, Habib ;
Garnero, Line ;
Colliot, Olivier .
HIPPOCAMPUS, 2009, 19 (06) :579-587
[8]   Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker [J].
Cole, James H. ;
Poudel, Rudra P. K. ;
Tsagkrasoulis, Dimosthenis ;
Caan, Matthan W. A. ;
Steves, Claire ;
Spector, Tim D. ;
Montana, Giovanni .
NEUROIMAGE, 2017, 163 :115-124
[9]   Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning [J].
Eskildsen, Simon F. ;
Coupe, Pierrick ;
Garcia-Lorenzo, Daniel ;
Fonov, Vladimir ;
Pruessner, Jens C. ;
Collins, D. Louis .
NEUROIMAGE, 2013, 65 :511-521
[10]   Prediction of conversion from mild cognitive impairment to Alzheimer's disease dementia based upon biomarkers and neuropsychological test performance [J].
Ewers, Michael ;
Walsh, Cathal ;
Trojanowski, John Q. ;
Shaw, Leslie M. ;
Petersen, Ronald C. ;
Jack, Clifford R., Jr. ;
Feldman, Howard H. ;
Bokde, Arun L. W. ;
Alexander, Gene E. ;
Scheltens, Philip ;
Vellas, Bruno ;
Dubois, Bruno ;
Weiner, Michael ;
Hampel, Harald .
NEUROBIOLOGY OF AGING, 2012, 33 (07) :1203-+