Ordinary p-Laplacian systems with nonlinear boundary conditions

被引:21
作者
Jebelean, P
Morosanu, G
机构
[1] W Univ Timisoara, Dept Math, RO-1900 Timisoara, Romania
[2] Cent European Univ, Dept Math & Applicat, H-1051 Budapest, Hungary
关键词
ordinary vector p-Laplacian; critical point; Palais-Smale condition; mountain pass theorem;
D O I
10.1016/j.jmaa.2005.04.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence of solutions for the boundary value problem -(vertical bar u'vertical bar(p-2)u')' + epsilon vertical bar u vertical bar(p-2)u = del F(t,u), in (0,T), -((vertical bar u'vertical bar(p-2)u')(0),-(vertical bar u'vertical bar(p-2)u')(T)) is an element of partial derivative j(u(0), u(T)), where epsilon >=, 0, p is an element of (1, infinity) are fixed, j : R-N x R-N -> (-infinity, +infinity] is a proper, convex and lower semicontinuous function and F: (0, T) X R-N -> R is a Caratheodory mapping, continuously differentiable with respect to the second variable and satisfies some usual growth conditions. Our approach is a variational one and relies on Szulkin's critical point theory [A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincare Anal. Non Lineaire 3 (1986) 77-109]. We obtain the existence of solutions in a coercive case as well as the existence of nontrivial solutions when the corresponding Euler-Lagrange functional has a "mountain pass" geometry. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:738 / 753
页数:16
相关论文
共 20 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   STRONGLY NONLINEAR ELLIPTIC PROBLEMS NEAR RESONANCE - A VARIATIONAL APPROACH [J].
ANANE, A ;
GOSSEZ, JP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1990, 15 (08) :1141-1159
[3]  
[Anonymous], 1995, RESULT AMBROSETTI RA
[4]  
Barbu V., 1976, NONLINEAR SEMIGROUPS
[5]  
De Figueiredo D. G., 1989, LECT EKELAND VARIATI
[6]  
Dinca G., 2003, ABSTR APPL ANAL, V10, P601
[7]  
DINCA G, IN PRESS DUALITY MAP
[8]  
Dinca G., 2001, PORT MATH, V58, P339
[9]   Nonlinear second-order multivalued boundary value problems [J].
Gasinski, L ;
Papageorgiou, NS .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2003, 113 (03) :293-319
[10]  
HEWIT E, 1965, REAL ABSTR ANAL