Compactness for Sobolev-type trace operators

被引:8
作者
Cavaliere, Paola [1 ]
Mihula, Zdenek [2 ]
机构
[1] Univ Salerno, Dipartimento Matemat, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
关键词
Sobolev spaces; Trace embeddings; Optimal target; Rearrangement-invariant spaces; Lorentz spaces; Orlicz spaces; Supremum operators; EMBEDDINGS; IMBEDDINGS; SPACES;
D O I
10.1016/j.na.2019.01.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Compactness of arbitrary-order Sobolev type embeddings for traces of n-dimensional functions on lower dimensional subspaces is investigated. Sobolev spaces built upon any rearrangement-invariant norm are allowed. In particular, we characterize compactness of trace embeddings for classical Sobolev, Lorentz-Sobolev and Orlicz- Sobolev type spaces. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页码:42 / 69
页数:28
相关论文
共 32 条
[1]   TRACES OF POTENTIALS .2. [J].
ADAMS, DR .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1973, 22 (10) :907-918
[2]  
Adams R.A., 2003, Sobolev Spaces, Vsecond
[3]  
Aliprantis Charalambos D., 2006, POSITIVE OPERATORS, DOI 10.1007/978-1-4020-5008-4
[4]  
[Anonymous], GRADUATE TEXTS MATH
[5]  
[Anonymous], 1962, SIBIRSK MAT ZH
[6]  
[Anonymous], 1965, P TECHN SCI C ADV SC
[7]  
[Anonymous], 1966, PROBABILITY POTENTIA
[8]  
[Anonymous], TRANSL MATH MONOGRAP
[9]  
Bennett C., 1988, PURE APPL MATH, V129
[10]   Sobolev embeddings into BMO, VMO, and L∞ [J].
Cianchi, A ;
Pick, L .
ARKIV FOR MATEMATIK, 1998, 36 (02) :317-340