Non-symmetrical Optimum Design Method of Fractional-order PID Controller

被引:0
作者
Boskovic, Marko C. [1 ,2 ]
Rapaic, Milan R. [2 ]
Sekara, Tomislav B. [3 ]
Govedarica, Vidan [1 ]
机构
[1] Univ East Sarajevo, Fac Elect Engn, East Sarajevo, Bosnia & Herceg
[2] Univ Novi Sad, Fac Tech Sci, Novi Sad, Serbia
[3] Univ Belgrade, Fac Elect Engn, Belgrade, Serbia
来源
2018 INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (INDEL 2018) | 2018年
关键词
Non-symmetrical optimum; PID control; Fractional-order; Optimization; Phase Margin; ROBUSTNESS; SENSITIVITY; CRITERION; SYSTEMS; RULES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents novel non-symmetrical optimum based design of fractional-order PID controller (FOPID). Optimal parameters of FOPID controller are obtained through minimization of the integral gain combining non-symmetrical criterion constraints and specified phase margin. Fractional-order parameter a is an integral part of optimization procedure and is obtained as solution with other parameters of FOPID controller (k(p), k(i), k(d)) for adopted filter time constant T-f. The effectiveness of the proposed method is tested with several representatives of typical industrial processes and comparison with PID controller optimized in the same manner is performed to demonstrate performance and robustness improvements of the closed-loop system with FOPID over PID controller.
引用
收藏
页数:5
相关论文
共 34 条
[1]  
[Anonymous], 1958, REGCLUNGSTECHNIK
[2]  
[Anonymous], 2009, HDB PI PID CONTROLLE, DOI DOI 10.1142/P575
[3]  
Astrom K.J., 1995, INSTRUMENT SOC AM
[4]  
Astrom K J., 2006, ISA - The Instrumentation, Systems and Automation Society
[5]   Revisiting the Ziegler-Nichols step response method for PID control [J].
Åstrom, KJ ;
Hågglund, T .
JOURNAL OF PROCESS CONTROL, 2004, 14 (06) :635-650
[6]  
Boskovic M.C., 2016, NOVEL METHOD OPTIMIZ, V22, P15
[7]   Practical Tuning Rule Development for Fractional Order Proportional and Integral Controllers [J].
Chen, YangQuan ;
Bhaskaran, Tripti ;
Xue, Dingyue .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2008, 3 (02)
[8]  
Desbourough L., 2002, AICHE S SERIES, V98
[9]   Software-based optimal PID design with robustness and noise sensitivity constraints [J].
Garpinger, Olof ;
Hagglund, Tore .
JOURNAL OF PROCESS CONTROL, 2015, 33 :90-101
[10]  
Kessler C., 1958, Regelungstechnik, V6, P432, DOI DOI 10.1524/AUTO.1958.6.112.395