The Trace Restriction: An Alternative Identification Strategy for the Bayesian Multinomial Probit Model

被引:22
作者
Burgette, Lane F. [1 ]
Nordheim, Erik V. [2 ]
机构
[1] RAND Corp, Arlington, VA 22202 USA
[2] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
关键词
Gibbs sampler; Marginal data augmentation; Prior distribution;
D O I
10.1080/07350015.2012.680416
中图分类号
F [经济];
学科分类号
02 ;
摘要
Previous authors have made Bayesian multinomial probit models identifiable by fixing a parameter on the main diagonal of the covariance matrix. The choice of which element one fixes can influence posterior predictions. Thus, we propose restricting the trace of the covariance matrix, which we achieve without computational penalty. This permits a prior that is symmetric to permutations of the nonbase outcome categories. We find in real and simulated consumer choice datasets that the trace-restricted model is less prone to making extreme predictions. Further, the trace restriction can provide stronger identification, yielding marginal posterior distributions that are more easily interpreted.
引用
收藏
页码:404 / 410
页数:7
相关论文
共 15 条
[11]  
Robert C.P., 2004, MONTE CARLO STAT MET, DOI DOI 10.1007/978-1-4757-4145-2
[12]  
Strachan R., 2008, 080964 TINB I
[13]   THE CALCULATION OF POSTERIOR DISTRIBUTIONS BY DATA AUGMENTATION [J].
TANNER, MA ;
WING, HW .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1987, 82 (398) :528-540
[14]  
Train KE, 2009, DISCRETE CHOICE METHODS WITH SIMULATION, 2ND EDITION, P1, DOI 10.1017/CBO9780511805271
[15]  
van Dyk DA, 2010, STAT SINICA, V20, P1423