SUCCESSIVE ITERATIONS AND LOGARITHMIC MEANS

被引:2
作者
Besenyei, Adam [1 ]
Petz, Denes [2 ]
机构
[1] Eotvos Lorand Univ, Dept Appl Anal, H-1117 Budapest, Hungary
[2] Alfred Renyi Inst Math, H-1364 Budapest, Hungary
来源
OPERATORS AND MATRICES | 2013年 / 7卷 / 01期
关键词
Matrix monotone function; matrix mean; Gauss's arithmetic-geometric mean; logarithmic mean; Stolarsky mean; MATRICES;
D O I
10.7153/oam-07-12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The successive iteration (started by Lagrange and Gauss) produces a new mean from two given ones. Several examples of matrix means are given that require the proof of the matrix monotonicity of the corresponding representing function. The paper contains extensions of the logarithmic mean and it is obtained that the Stolarsky mean can be used also for matrices.
引用
收藏
页码:205 / 218
页数:14
相关论文
共 14 条
[1]   CONCAVITY OF CERTAIN MAPS ON POSITIVE DEFINITE MATRICES AND APPLICATIONS TO HADAMARD PRODUCTS [J].
ANDO, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 26 (AUG) :203-241
[2]   Completely positive mappings and mean matrices [J].
Besenyei, Adam ;
Petz, Denes .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (05) :984-997
[3]  
BHATIA R., 2012, COMMUN STOCH ANAL, V6, P15
[4]  
Bhatia R., 1996, MATRIX ANAL
[5]  
Bhatia R, 2008, RESONANCE, V13, P583, DOI 10.1007/s12045-008-0063-4
[6]  
BORWEIN J. M., 1987, ENSEIGN MATH
[7]  
Cox D. A., 1984, Enseign. Math., V30, P275
[8]   MEANS OF POSITIVE LINEAR-OPERATORS [J].
KUBO, F ;
ANDO, T .
MATHEMATISCHE ANNALEN, 1980, 246 (03) :205-224
[9]  
Morozova E.A., 1989, J SOVIET MATH, V36, P69
[10]   On comparison of Stolarsky and Gini means [J].
Neuman, E ;
Páles, Z .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 278 (02) :274-284