An ANOVA model for dependent random measures

被引:224
作者
De Iorio, M [1 ]
Müller, P
Rosner, GL
MacEachern, SN
机构
[1] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England
[2] Univ Texas, MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
[3] Univ Texas, MD Anderson Canc Ctr, Dept Stat, Houston, TX 77030 USA
[4] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
关键词
dependent Dirichlet process; hierarchical models; nonparametric Bayes;
D O I
10.1198/016214504000000205
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider dependent nonparametric models for related random probability distributions. For example, the random distributions might be indexed by a categorical covariate indicating the treatment levels in a clinical trial and might represent random effects distributions under the respective treatment combinations. We propose a model that describes dependence across random distributions in an analysis of variance (ANOVA)-type fashion. We define a probability model in such a way that marginally each random measure follows a Dirichlet process (DP) and use the dependent Dirichlet process to define the desired dependence across the related random measures. The resulting probability model can alternatively be described as a mixture of ANOVA models with a DP prior on the unknown mixing measure. The main features of the proposed approach are ease of interpretation and computational simplicity. Because the model follows the standard ANOVA structure, interpretation and inference parallels conventions for ANOVA models. This includes the notion of main effects. interactions, contrasts, and the like. Of course, the analogies are limited to Structure and interpretation. The actual objects of the inference are random distributions instead of the unknown normal means in standard ANOVA models. Besides interpretation and model structure, another important feature of the proposed approach is ease of posterior simulation. Because the model can be rewritten as a DP mixture of ANOVA models, it inherits all computational advantages of standard DP mixture models. This includes availability of efficient Gibbs sampling schemes for posterior simulation and ease of implementation of even high-dimensional applications. Complexity of implementing posterior simulation is-at least conceptually-dimension independent.
引用
收藏
页码:205 / 215
页数:11
相关论文
共 39 条
[1]   BAYESIAN-ANALYSIS OF BINARY AND POLYCHOTOMOUS RESPONSE DATA [J].
ALBERT, JH ;
CHIB, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) :669-679
[2]  
[Anonymous], 1999, ASA P SECT BAYES STA
[3]  
[Anonymous], 2000, GEN LINEAR MODELS BA
[4]   MIXTURES OF DIRICHLET PROCESSES WITH APPLICATIONS TO BAYESIAN NONPARAMETRIC PROBLEMS [J].
ANTONIAK, CE .
ANNALS OF STATISTICS, 1974, 2 (06) :1152-1174
[5]  
Bernardo J., 2009, Bayesian theory
[6]   FERGUSON DISTRIBUTIONS VIA POLYA URN SCHEMES [J].
BLACKWELL, D ;
MACQUEEN, JB .
ANNALS OF STATISTICS, 1973, 1 (02) :353-355
[7]   A semiparametric Bayesian model for randomised block designs [J].
Bush, CA ;
MacEachern, SN .
BIOMETRIKA, 1996, 83 (02) :275-285
[8]   Rao-Blackwellisation of sampling schemes [J].
Casella, G ;
Robert, CP .
BIOMETRIKA, 1996, 83 (01) :81-94
[9]  
Cifarelli D., 1978, PROBLEMI STAT NONPAR
[10]   Bayesian Tobit modeling of longitudinal ordinal clinical trial compliance data with nonignorable missingness [J].
Cowles, MK ;
Carlin, BP ;
Connett, JE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) :86-98