Molecular Mechanisms of Oxygen Activation and Hydrogen Peroxide Formation in Lytic Polysaccharide Monooxygenases

被引:99
作者
Wang, Binju [1 ,2 ,5 ,6 ]
Walton, Paul H. [3 ]
Rovira, Carme [1 ,2 ,4 ]
机构
[1] Univ Barcelona, Dept Quim Inorgan & Organ, Marti & Franques 1, E-08028 Barcelona, Spain
[2] Univ Barcelona, IQTCUB, Marti & Franques 1, E-08028 Barcelona, Spain
[3] Univ York, Dept Chem, Heslington YO10 5DD, N Yorkshire, England
[4] ICREA, Passeig Lluis Co 23, Barcelona 08020, Spain
[5] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Coll Chem & Chem Engn, Xiamen 360015, Fujian, Peoples R China
[6] Xiamen Univ, Fujian Prov Key Lab Theoret & Computat Chem, Coll Chem & Chem Engn, Xiamen 360015, Fujian, Peoples R China
来源
ACS CATALYSIS | 2019年 / 9卷 / 06期
基金
英国生物技术与生命科学研究理事会;
关键词
Enzyme catalysis; lytic polysaccharide monooxygenases (LPMOs); O-2; activation; H2O2; formation; metadynamics; COMPOUND-I; CELLULOSE DEGRADATION; OXIDATIVE CLEAVAGE; ACTIVE-SITE; COPPER; ENZYME; HYDROLYSIS; REACTIVITY; CATALYSIS; INSIGHTS;
D O I
10.1021/acscatal.9b00778
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes for the degradation of recalcitrant polysaccharides such as chitin and cellulose. Unlike classical hydrolytic enzymes (cellulases), LPMOs catalyze the cleavage of the glycosidic bond via an oxidative mechanism using oxygen and a reductant. The full enzymatic molecular mechanisms, starting from the initial electron transfer from a reductant to oxygen activation and hydrogen peroxide formation, are not yet understood. Using quantum mechanics/molecular mechanics (QM/MM) metadynamics simulations, we have uncovered the oxygen activation mechanisms by LPMO in the presence of ascorbic acid, one of the most-used reductants in LPMOs assays. Our simulations capture the sequential formation of Cu(II)-O-2(-) and Cu(II)-OOH- intermediates via facile H atom abstraction from ascorbate. By investigating all the possible reaction pathways from the Cu(II)-OOH- intermediate, we ruled out Cu(II)-O center dot- formation via direct O-O cleavage of Cu(II)-OOH-. Meanwhile, we identified a possible pathway in which the proximal O atom of Cu(II)-OOH- abstracts a hydrogen atom from ascorbate, leading to Cu(I) and H2O2. The in-situ-generated H2O2 either converts to LPMO-Cu(II)-O center dot- via a homolytic reaction, or diffuses into the bulk water in an uncoupled pathway. The competition of these two pathways is strongly dependent on the binding of the carbohydrate substrate, which plays a role in barricading the in-situ generated H2O2 molecule, preventing its diffusion from the active site into the bulk water. Based on the present results, we propose a catalytic cycle of LPMOs that is consistent with the experimental information available. In particular, it explains the enigmatic substrate dependence of the reactivity of the LPMO with H2O2.
引用
收藏
页码:4958 / 4969
页数:23
相关论文
共 77 条
[1]   Ascorbate regulates haematopoietic stem cell function and leukaemogenesis [J].
Agathocleous, Michalis ;
Meacham, Corbin E. ;
Burgess, Rebecca J. ;
Piskounova, Elena ;
Zhao, Zhiyu ;
Crane, Genevieve M. ;
Cowin, Brianna L. ;
Bruner, Emily ;
Murphy, Malea M. ;
Chen, Weina ;
Spangrude, Gerald J. ;
Hu, Zeping ;
DeBerardinis, Ralph J. ;
Morrison, Sean J. .
NATURE, 2017, 549 (7673) :476-+
[2]   Well-tempered metadynamics: A smoothly converging and tunable free-energy method [J].
Barducci, Alessandro ;
Bussi, Giovanni ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2008, 100 (02)
[3]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[4]   Cellulose Degradation by Polysaccharide Monooxygenases [J].
Beeson, William T. ;
Vu, Van V. ;
Span, Elise A. ;
Phillips, Christopher M. ;
Marletta, Michael A. .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 84, 2015, 84 :923-946
[5]   Oxidative Cleavage of Cellulose by Fungal Copper-Dependent Polysaccharide Monooxygenases [J].
Beeson, William T. ;
Phillips, Christopher M. ;
Cate, Jamie H. D. ;
Marletta, Michael A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (02) :890-892
[6]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[7]   Catalytic Mechanism of Fungal Lytic Polysaccharide Monooxygenases Investigated by First-Principles Calculations [J].
Bertini, Luca ;
Breglia, Raffaella ;
Lambrughi, Matteo ;
Fantucci, Piercarlo ;
De Gioia, Luca ;
Borsari, Marco ;
Sola, Marco ;
Bortolotti, Carlo Augusto ;
Bruschi, Maurizio .
INORGANIC CHEMISTRY, 2018, 57 (01) :86-97
[8]  
Bissaro B, 2017, NAT CHEM BIOL, V13, P1123, DOI [10.1038/NCHEMBIO.2470, 10.1038/nchembio.2470]
[9]   Laccase-derived lignin compounds boost cellulose oxidative enzymes AA9 [J].
Brenelli, Livia ;
Squina, Fabio M. ;
Felby, Claus ;
Cannella, David .
BIOTECHNOLOGY FOR BIOFUELS, 2018, 11
[10]   Mechanism of hydrogen peroxide formation by lytic polysaccharide monooxygenase [J].
Caldararu, Octav ;
Oksanen, Esko ;
Ryde, Ulf ;
Hedegard, Erik D. .
CHEMICAL SCIENCE, 2019, 10 (02) :576-586