Leveraging Vector-Quantized Variational Autoencoder Inner Metrics for Anomaly Detection

被引:7
作者
Gangloff, Hugo [1 ]
Pham, Minh-Tan [1 ]
Courtrai, Luc [1 ]
Lefevre, Sebastien [1 ]
机构
[1] Univ Bretagne Sud, IRISA, UMR 6074, F-56000 Vannes, France
来源
2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2022年
关键词
D O I
10.1109/ICPR56361.2022.9956102
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly Detection (AD) is an important research topic, with very diverse applications such as industrial defect detection, medical diagnosis, fraud detection, intrusion detection, etc. Within the last few years, deep learning-based methods have become the standard approach for AD. In many practical cases, the anomalies are unknown in advance. Therefore, most of challenging AD problems need to be addressed in an unsupervised or weakly supervised framework. In this context, deep generative models are widely used, in particular Variational Autoencoder (VAE) models. VAEs have been extended to Vector-Quantized VAEs (VQ-VAEs), a model increasingly popular because of its versatility enabled by the discrete latent space. We present for the first time a robust approach which takes advantage of the inner metrics of VQ-VAEs for AD. We show that the distance between the output of the encoder and the codebook vectors of a VQ-VAE provides a valuable information which can be used to localize the anomalies. In our approach, this metric complements a reconstruction-based metric to improve AD results. We compare our model with state-of-the-art AD models on three standards datasets, including the MVTec, UCSD-Ped1 and CIFAR-10 datasets. Experiments show that the proposed method yields high competitive results.
引用
收藏
页码:435 / 441
页数:7
相关论文
共 32 条
[1]  
[Anonymous], 2009, Rep. TR-2009
[2]   Autoencoders for unsupervised anomaly segmentation in brain MR images: A comparative study [J].
Baur, Christoph ;
Denner, Stefan ;
Wiestler, Benedikt ;
Navab, Nassir ;
Albarqouni, Shadi .
MEDICAL IMAGE ANALYSIS, 2021, 69
[3]   Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders [J].
Bergmann, Paul ;
Loewe, Sindy ;
Fauser, Michael ;
Sattlegger, David ;
Steger, Carsten .
PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2019, :372-380
[4]   MVTec AD - A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection [J].
Bergmann, Paul ;
Fauser, Michael ;
Sattlegger, David ;
Steger, Carsten .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :9584-9592
[5]   Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models [J].
Bond-Taylor, Sam ;
Leach, Adam ;
Long, Yang ;
Willcocks, Chris G. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) :7327-7347
[6]  
Defard Thomas, 2021, Pattern Recognition. ICPR International Workshops and Challenges. Proceedings. Lecture Notes in Computer Science (LNCS 12664), P475, DOI 10.1007/978-3-030-68799-1_35
[7]  
Dehaene D., 2020, INT C LEARN REPR
[8]  
Hawkins Douglas M, 1980, Identification of outliers, V11
[9]  
Kingma D.P., 2013, arXiv
[10]   An Introduction to Variational Autoencoders [J].
Kingma, Diederik P. ;
Welling, Max .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2019, 12 (04) :4-89