首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
ON THE NUMBER OF CYCLIC SUBGROUPS IN FINITE GROUPS
被引:0
作者
:
Song, Keyan
论文数:
0
引用数:
0
h-index:
0
机构:
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Song, Keyan
[
1
]
Zhou, Wei
论文数:
0
引用数:
0
h-index:
0
机构:
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Zhou, Wei
[
1
]
机构
:
[1]
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
:
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS
|
2019年
/ 41期
关键词
:
finite groups;
cyclic subgroups;
2-groups;
D O I
:
暂无
中图分类号
:
O1 [数学];
学科分类号
:
0701 ;
070101 ;
摘要
:
It is proved that a finite group G has vertical bar G vertical bar - 3 cyclic subgroups if and only if G congruent to D(10 )or Q(8).
引用
收藏
页码:593 / 596
页数:4
相关论文
共 4 条
[1]
Berkovich Y., 2008, GROUPS PRIME POWER O
[2]
Huppert B., 1982, Endliche gruppen III
[3]
Tarnauceanu M., FINITE GROUPS CERTAI
[4]
Finite Groups With a Certain Number of Cyclic Subgroups
Tarnauceanu, Marius
论文数:
0
引用数:
0
h-index:
0
机构:
Alexandru Ioan Cuza Univ, Dept Math, Iasi, Romania
Alexandru Ioan Cuza Univ, Dept Math, Iasi, Romania
Tarnauceanu, Marius
[J].
AMERICAN MATHEMATICAL MONTHLY,
2015,
122
(03)
: 275
-
276
←
1
→
共 4 条
[1]
Berkovich Y., 2008, GROUPS PRIME POWER O
[2]
Huppert B., 1982, Endliche gruppen III
[3]
Tarnauceanu M., FINITE GROUPS CERTAI
[4]
Finite Groups With a Certain Number of Cyclic Subgroups
Tarnauceanu, Marius
论文数:
0
引用数:
0
h-index:
0
机构:
Alexandru Ioan Cuza Univ, Dept Math, Iasi, Romania
Alexandru Ioan Cuza Univ, Dept Math, Iasi, Romania
Tarnauceanu, Marius
[J].
AMERICAN MATHEMATICAL MONTHLY,
2015,
122
(03)
: 275
-
276
←
1
→