Robust residual a posteriori error estimators for the Reissner-Mindlin eigenvalues system

被引:0
作者
Creuse, E. [1 ,2 ]
Nicaise, S. [3 ]
Verhille, E. [1 ]
机构
[1] Univ Lille 1, Lab Paul Painleve, UMR 8524, F-59655 Villeneuve Dascq, France
[2] Univ Lille 1, INRIA Lille Nord Europe, F-59655 Villeneuve Dascq, France
[3] Univ Valenciennes & Hainaut Cambresis, Inst Sci & Tech Valenciennes, CNRS, LAMAV,FR 2956, F-59313 Valenciennes 9, France
关键词
Reissner-Mindlin plate; finite elements; a posteriori error estimators; eigenvalues; FINITE-ELEMENT METHODS; PLATE; APPROXIMATION; PRIORI;
D O I
10.1515/jnum-2013-0004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a conforming finite element approximation of the Reissner-Mindlin eigenvalue system, for which a robust a posteriori error estimator for the eigenvector and the eigenvalue errors is proposed. For that purpose, we first perform a robust a priori error analysis without strong regularity assumption. Upper and lower bounds are then obtained up to higher order terms that are superconvergent, provided that the eigenvalue is simple. The convergence rate of the proposed estimator is confirmed by a numerical test
引用
收藏
页码:89 / 133
页数:45
相关论文
共 37 条
[1]  
Ainsworth M., 2000, PURE APPL MATH NEW Y
[2]  
[Anonymous], 2007, FINITE ELEMENTE
[3]  
[Anonymous], ENG COMPUT
[4]  
[Anonymous], 2004, Studies in Mathematics and its Applications
[5]  
[Anonymous], J MATH SCI
[6]  
[Anonymous], 1992, Research in Applied Mathematics
[7]  
[Anonymous], 2001, FINITE ELEMENT METHO
[8]   A UNIFORMLY ACCURATE FINITE-ELEMENT METHOD FOR THE REISSNER-MINDLIN PLATE [J].
ARNOLD, DN ;
FALK, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1276-1290
[9]  
Babuska I., 1991, HDB NUMERICAL ANAL, V2
[10]   A 4-NODE PLATE BENDING ELEMENT BASED ON MINDLIN REISSNER PLATE-THEORY AND A MIXED INTERPOLATION [J].
BATHE, KJ ;
DVORKIN, EN .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1985, 21 (02) :367-383