Toughness and the existence of Hamiltonian [a, b]-factors of graphs

被引:0
作者
Zhou, Sizhong [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Math & Phys, Zhenjiang 212003, Jiangsu, Peoples R China
关键词
graph; toughness; a; b]-factor; Hamiltonian; (A;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The toughness of a graph G, denoted by t(G), is defined as t(G) = min{vertical bar S vertical bar/omega(G - S) : S subset of V (G), omega(G - S) >= 2} where omega(G - S) denotes the number of components of G - S or t(G) = +infinity if G is a complete graph. Let a and b be nonnegative integers with 2 <= a < b - 1, and let G be a Hamiltonian graph of order n with n >= a + 2. An [a, b]-factor F of G is called a Hamiltonian [a, b]-factor if F contains a Hamiltonian cycle. In this paper, it is proved that G has a Hamiltonian [a, a + 1]-factor if t(G) > a and has a Hamiltonian [a, b]-factor if t(G) >= a - 1 + a-1/b-2. This result is an improvement and extension of H. Enomoto and P. Katerinis's results (H. Enomoto, B. Jackson, P. Katerinis, A. Satio, Toughness and the existence of k-factors, Journal of Graph Theory 9(1985), 87-95; P. Katerinis, Toughness of graphs and the existence of factors, Discrete Mathematics 80(1990), 81-92).
引用
收藏
页码:187 / 197
页数:11
相关论文
共 14 条
  • [1] Bondy J. A., 1976, Graduate Texts in Mathematics, V290
  • [2] Chvatal V., 1973, Discrete Mathematics, V5, P215, DOI 10.1016/0012-365X(73)90138-6
  • [3] TOUGHNESS AND THE EXISTENCE OF K-FACTORS
    ENOMOTO, H
    JACKSON, B
    KATERINIS, P
    SAITO, A
    [J]. JOURNAL OF GRAPH THEORY, 1985, 9 (01) : 87 - 95
  • [4] Degree condition for the existence of a k-factor containing a given Hamiltonian cycle
    Gao, Yunshu
    Li, Gaojun
    Li, Xuechao
    [J]. DISCRETE MATHEMATICS, 2009, 309 (08) : 2373 - 2381
  • [5] TOUGHNESS OF GRAPHS AND THE EXISTENCE OF FACTORS
    KATERINIS, P
    [J]. DISCRETE MATHEMATICS, 1990, 80 (01) : 81 - 92
  • [6] Toughness and the existence of fractional k-factors of graphs
    Liu, Guizhen
    Zhang, Lanju
    [J]. DISCRETE MATHEMATICS, 2008, 308 (09) : 1741 - 1748
  • [7] Lovasz L., 1970, Journal of Combinatorial Theory, V8, P391
  • [8] Fan-type results for the existence of [a, b]-factors
    Matsuda, H
    [J]. DISCRETE MATHEMATICS, 2006, 306 (07) : 688 - 693
  • [9] Degree conditions for Hamiltonian graphs to have [a,b]-factors containing a given Hamiltonian cycle
    Matsuda, H
    [J]. DISCRETE MATHEMATICS, 2004, 280 (1-3) : 241 - 250
  • [10] Pu B., 2009, INT J COMPUTATIONAL, V3, P83