Two-person game with nash equilibrium in optimal control problems

被引:9
作者
Antipin, Anatoly [1 ]
机构
[1] Russian Acad Sci, Ctr Comp, Moscow 119333, Russia
基金
俄罗斯基础研究基金会;
关键词
Two-person game; Nash equilibrium; Optimal control; Extra-gradient method;
D O I
10.1007/s11590-011-0440-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A two-person game with a Nash equilibrium is formulated for optimal control problems with a free right end and a linear differential system. The game is reduced to the calculation of a fixed point of an extremal mapping, which in turn is reduced to a variational inequality with linear constraints generated by systems of linear differential controllable processes. An extra-gradient iterative method is proposed for calculating the Nash equilibrium of the dynamic game. The convergence of the method is proved.
引用
收藏
页码:1349 / 1378
页数:30
相关论文
共 18 条
[1]  
[Anonymous], 1955, Pac. J. Math, DOI DOI 10.2140/PJM.1955.5.807
[2]   Gradient approach of computing fixed points of equilibrium problems [J].
Antipin, A .
JOURNAL OF GLOBAL OPTIMIZATION, 2002, 24 (03) :285-309
[3]  
Antipin A., 2002, GRADIENT EXTRAGRADIE
[4]  
Antipin A.S., 1997, COMP MATH MATH PHYS, V37, P1327
[5]   Multicriteria equilibrium programming problems and methods for their solutions [J].
Antipin, Anatoly .
OPTIMIZATION, 2009, 58 (07) :729-753
[6]   Extra-proximal methods for solving two-person nonzero-sum games [J].
Antipin, Anatoly .
MATHEMATICAL PROGRAMMING, 2009, 120 (01) :147-177
[7]  
Antipin AS, 1997, AUTOMAT REM CONTR+, V58, P1337
[8]  
ANTIPIN AS, 1992, DIFF EQUAT+, V28, P1498
[9]  
Aubin J.P., 1990, SET VALUED ANAL, DOI 10.1007/978-0-8176-4848-0
[10]  
Chinchuluun A, 2008, SPRINGER SER OPTIM A, V17, P1, DOI 10.1007/978-0-387-77247-9