Periodic solutions of first order singular Hamiltonian systems

被引:10
作者
Tanaka, K
机构
[1] Department of Mathematics, School of Science and Engineering, Waseda University, Tokyo 169, Okubo, Shinjuku-ku
关键词
periodic solutions; Hamiltonian systems; minimax arguments;
D O I
10.1016/0362-546X(94)00310-E
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:691 / 706
页数:16
相关论文
共 9 条
[1]   CRITICAL-POINTS WITH LACK OF COMPACTNESS AND SINGULAR DYNAMICAL-SYSTEMS [J].
AMBROSETTI, A ;
ZELATI, VC .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1987, 149 :237-259
[2]  
Ambrosetti A., 1993, Periodic solutions of singular Lagrangian Systems
[3]   A MINIMAX METHOD FOR A CLASS OF HAMILTONIAN-SYSTEMS WITH SINGULAR POTENTIALS [J].
BAHRI, A ;
RABINOWITZ, PH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 82 (02) :412-428
[4]  
Edwards R, 1977, LITTLEWOOD PALEY MUL
[5]   CONSERVATIVE DYNAMICAL-SYSTEMS INVOLVING STRONG FORCES [J].
GORDON, WB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 204 (APR) :113-135
[7]   NON-COLLISION SOLUTIONS FOR A 2ND-ORDER SINGULAR HAMILTONIAN SYSTEM WITH WEAK FORCE [J].
TANAKA, K .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1993, 10 (02) :215-238
[8]   A PRESCRIBED ENERGY PROBLEM FOR A SINGULAR HAMILTONIAN SYSTEM WITH A WEAK FORCE [J].
TANAKA, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 113 (02) :351-390
[9]  
ZELATI VC, COLLISIONS NONCOLLIS