MiKM: multi-step inertial Krasnosel'skii-Mann algorithm and its applications

被引:62
作者
Dong, Q. L. [1 ,2 ]
Huang, J. Z. [3 ,4 ]
Li, X. H. [1 ,2 ]
Cho, Y. J. [5 ,6 ,7 ]
Rassias, Th. M. [8 ]
机构
[1] Civil Aviat Univ China, Tianjin Key Lab Adv Signal Proc, Tianjin 300300, Peoples R China
[2] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[5] Gyeongsang Natl Univ, Dept Math Educ, Jinju 660701, South Korea
[6] Gyeongsang Natl Univ, RINS, Jinju 660701, South Korea
[7] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[8] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
基金
中国国家自然科学基金;
关键词
Nonexpansive operator; Multi-step inertial Krasnosel'skii-Mann algorithm; Monotone inclusion; Bounded perturbation resilience; Douglas-Rachford splitting method; Forward-backward splitting method; Backward-forward splitting method; Davis-Yin splitting method; GRADIENT METHODS; SUPERIORIZATION;
D O I
10.1007/s10898-018-0727-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we first introduce a multi-step inertial Krasnosel'skii-Mann algorithm (MiKM) for nonexpansive operators in real Hilbert spaces. We give the convergence of the MiKM by investigating the convergence of the Krasnosel'skii-Mann algorithm with perturbations. We also establish global pointwise and ergodic iteration complexity bounds of the Krasnosel'skii-Mann algorithm with perturbations. Based on the MiKM, we construct some multi-step inertial splitting methods, including the multi-step inertial Douglas-Rachford splitting method (MiDRS), the multi-step inertial forward-backward splitting method, multi-step inertial backward-forward splitting method and and the multi-step inertial Davis-Yin splitting method. Numerical experiments are provided to illustrate the advantage of the MiDRS over the one-step inertial DRS and the original DRS.
引用
收藏
页码:801 / 824
页数:24
相关论文
共 58 条
[1]   Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space [J].
Alvarez, F .
SIAM JOURNAL ON OPTIMIZATION, 2004, 14 (03) :773-782
[2]   Backward-forward algorithms for structured monotone inclusions in Hilbert spaces [J].
Attouch, Hedy ;
Peypouquet, Juan ;
Redont, Patrick .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (02) :1095-1117
[3]   A DYNAMICAL APPROACH TO AN INERTIAL FORWARD-BACKWARD ALGORITHM FOR CONVEX MINIMIZATION [J].
Attouch, Hedy ;
Peypouquet, Juan ;
Redont, Patrick .
SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (01) :232-256
[4]  
Aubin J.P., 1990, Set-Valued Analysis, DOI 10.1007/978-0-8176-4848-0
[5]   A splitting algorithm for dual monotone inclusions involving cocoercive operators [J].
Bang Cong Vu .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 38 (03) :667-681
[6]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[7]   An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems [J].
Bot, Radu Ioan ;
Csetnek, Ernoe Robert .
NUMERICAL ALGORITHMS, 2016, 71 (03) :519-540
[8]   Inertial Douglas-Rachford splitting for monotone inclusion problems [J].
Bot, Radu Ioan ;
Csetnek, Ernoe Robert ;
Hendrich, Christopher .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 :472-487
[9]   A unified treatment of some iterative algorithms in signal processing and image reconstruction [J].
Byrne, C .
INVERSE PROBLEMS, 2004, 20 (01) :103-120
[10]   Perturbation resilience and superiorization of iterative algorithms [J].
Censor, Y. ;
Davidi, R. ;
Herman, G. T. .
INVERSE PROBLEMS, 2010, 26 (06)