Linear Fractional Transformations of Nevanlinna Functions Associated with a Nonnegative Operator

被引:2
作者
Behrndt, Jussi [1 ]
Hassi, Seppo [2 ]
de Snoo, Henk [3 ]
Wietsma, Rudi [2 ]
Winkler, Henrik [4 ]
机构
[1] Graz Univ Technol, Inst Numer Math, A-8010 Graz, Austria
[2] Univ Vaasa, Dept Math & Stat, Vaasa 65101, Finland
[3] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AK Groningen, Netherlands
[4] Tech Univ Ilmenau, Inst Math, D-98693 Ilmenau, Germany
基金
芬兰科学院;
关键词
BOUNDARY-VALUE-PROBLEMS; EXTENSION;
D O I
10.1007/s11785-011-0197-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper a subclass of scalar Nevanlinna functions is studied, which coincides with the class of Weyl functions associated to a nonnegative symmetric operator of defect one in a Hilbert space. This class consists of all Nevanlinna functions that are holomorphic on (-a, 0) and all those Nevanlinna functions that have one negative pole a and are injective on . These functions are characterized via integral representations and special attention is paid to linear fractional transformations which arise in extension and spectral problems of symmetric and selfadjoint operators.
引用
收藏
页码:331 / 362
页数:32
相关论文
共 24 条
[1]   Monotone convergence theorems for semi-bounded operators and forms with applications [J].
Behrndt, Jussi ;
Hassi, Seppo ;
de Snoo, Henk ;
Wietsma, Rudi .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 :927-951
[2]  
Derkach V., 1999, Methods Funct. Anal. Topology, V5, P65
[3]  
Derkach V., 1995, J. Math. Sci, V73, P141, DOI [10.1007/BF02367240, DOI 10.1007/BF02367240]
[4]   GENERALIZED RESOLVENTS AND THE BOUNDARY-VALUE-PROBLEMS FOR HERMITIAN OPERATORS WITH GAPS [J].
DERKACH, VA ;
MALAMUD, MM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 95 (01) :1-95
[5]  
Donoghue W.F., 1974, Die Grundlehren der mathematischen Wissenschaften, V207
[6]  
Dym H., 1976, GAUSSIAN PROCESSES F
[7]  
Hassi S, 1997, ANN ACAD SCI FENN-M, V22, P123
[8]   Boundary-value problems for two-dimensional canonical systems [J].
Hassi, S ;
De Snoo, H ;
Winkler, H .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 36 (04) :445-479
[9]   On Krein's extension theory of nonnegative operators [J].
Hassi, S ;
Malamud, M ;
de Snoo, H .
MATHEMATISCHE NACHRICHTEN, 2004, 274 :40-73
[10]   Componentwise and Cartesian decompositions of linear relations [J].
Hassi, S. ;
De Snoo, H. S. V. ;
Szafraniec, F. H. .
DISSERTATIONES MATHEMATICAE, 2009, (465) :4-58