MONOMIAL DECOMPOSITION OF HOMOGENEOUS POLYNOMIALS IN VECTOR LATTICES

被引:2
|
作者
Kusraev, Anatoly G. [1 ,2 ]
Kusraeva, Zalina A. [2 ,3 ]
机构
[1] North Osetian State Univ, Vladikavkaz 362019, Russia
[2] Russian Acad Sci, Vladikavkaz Sci Ctr, Southern Math Inst, Vladikavkaz 362027, Russia
[3] Southern Fed Univ, Reg Math Ctr, Rostov Na Donu 344006, Russia
来源
ADVANCES IN OPERATOR THEORY | 2019年 / 4卷 / 02期
基金
俄罗斯基础研究基金会;
关键词
vector lattice; multilinear operator; homogeneous polynomial; factorization; TENSOR-PRODUCTS; F-ALGEBRAS;
D O I
10.15352/aot.1807-1394
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is devoted to the characterization and weighted shift representation of regular homogeneous polynomials between vector lattices admitting a decomposition into a sum of monomials in lattice homomorphisms. The main tool is the factorization theorem for order bounded disjointness preserving multilinear operators obtained earlier by the authors.
引用
收藏
页码:428 / +
页数:20
相关论文
共 50 条
  • [31] Finite atomic lattices and resolutions of monomial ideals
    Mapes, Sonja
    JOURNAL OF ALGEBRA, 2013, 379 : 259 - 276
  • [32] Decomposition of homogeneous vector fields of degree one and representation of the flow
    Ancona, F.
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 1996, 13 (02): : 135 - 169
  • [33] DECOMPOSITION OF COHOMOLOGY OF VECTOR BUNDLES ON HOMOGENEOUS IND-SPACES
    Hristova, Elitza
    Penkov, Ivan
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2017, 70 (07): : 907 - 916
  • [34] Decomposition of homogeneous vector fields of degree one and representation of the flow
    Ancona, F
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (02): : 135 - 169
  • [35] Ordering monomial factors of polynomials in the product representation
    Bunk, B.
    Elser, S.
    Frezzotti, R.
    Jansen, K.
    Computer Physics Communications, 1999, 118 (02): : 95 - 109
  • [36] Monomial functions, normal polynomials and polynomial equations
    Gselmann, Eszter
    Iqbal, Mehak
    AEQUATIONES MATHEMATICAE, 2023, 97 (5-6) : 1059 - 1082
  • [37] Monomial functions, normal polynomials and polynomial equations
    Eszter Gselmann
    Mehak Iqbal
    Aequationes mathematicae, 2023, 97 : 1059 - 1082
  • [38] Ordering monomial factors of polynomials in the product representation
    Bunk, B
    Elser, S
    Frezzotti, R
    Jansen, K
    COMPUTER PHYSICS COMMUNICATIONS, 1999, 118 (2-3) : 95 - 109
  • [39] Monomial functions with linear structure and permutation polynomials
    Charpin, Pascale
    Kyureghyan, Gohar M.
    FINITE FIELDS: THEORY AND APPLICATIONS, 2010, 518 : 99 - +
  • [40] Regularity and h-polynomials of monomial ideals
    Hibi, Takayuki
    Matsuda, Kazunori
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (16) : 2427 - 2434