A single nucleotide incorporation step limits human telomerase repeat addition activity

被引:21
作者
Chen, Yinnan [1 ]
Podlevsky, Joshua D. [1 ]
Logeswaran, Dhenugen [1 ]
Chen, Julian J-L [1 ]
机构
[1] Arizona State Univ, Sch Mol Sci, Tempe, AZ 85281 USA
基金
美国国家卫生研究院;
关键词
deoxynucleoside diphosphate; DNA polymerase; processivity; reverse transcriptase; ribonucleoprotein; TEMPLATE-BOUNDARY DEFINITION; REVERSE-TRANSCRIPTASE; RNA TEMPLATE; CATALYTIC SUBUNIT; STRUCTURAL BASIS; PROCESSIVITY; BINDING; DOMAIN; MOTIF; DETERMINANTS;
D O I
10.15252/embj.201797953
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human telomerase synthesizes telomeric DNA repeats (GGTTAG)(n) onto chromosome ends using a short template from its integral telomerase RNA (hTR). However, telomerase is markedly slow for processive DNA synthesis among DNA polymerases. We report here that the unique template-embedded pause signal restricts the first nucleotide incorporation for each repeat synthesized, imparting a significantly greater K-M. This slow nucleotide incorporation step drastically limits repeat addition processivity and rate under physiological conditions, which is alleviated with augmented concentrations of dGTP or dGDP, and not with dGMP nor other nucleotides. The activity stimulation by dGDP is due to nucleoside diphosphates functioning as substrates for telomerase. Converting the first nucleotide of the repeat synthesized from dG to dA through the telomerase template mutation, hTR-51U, correspondingly shifts telomerase repeat addition activity stimulation to dATP-dependent. In accordance, telomerase without the pause signal synthesizes DNA repeats with extremely high efficiency under low dGTP concentrations and lacks dGTP stimulation. Thus, the first nucleotide incorporation step of the telomerase catalytic cycle is a potential target for therapeutic enhancement of telomerase activity.
引用
收藏
页数:17
相关论文
共 54 条
[1]  
Akiyama BM, 2015, NUCLEIC ACIDS RES, V43, P1
[2]   Ancestral Mutation in Telomerase Causes Defects in Repeat Addition Processivity and Manifests As Familial Pulmonary Fibrosis [J].
Alder, Jonathan K. ;
Cogan, Joy D. ;
Brown, Andrew F. ;
Anderson, Collin J. ;
Lawson, William E. ;
Lansdorp, Peter M. ;
Phillips, John A., III ;
Loyd, James E. ;
Chen, Julian J. -L. ;
Armanios, Mary .
PLOS GENETICS, 2011, 7 (03)
[3]   Complex interactions between the DNA-damage response and mammalian telomeres [J].
Arnoult, Nausica ;
Karlseder, Jan .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2015, 22 (11) :859-866
[4]   The structure and function of telomerase reverse transcriptase [J].
Autexier, Chantal ;
Lue, Neal F. .
ANNUAL REVIEW OF BIOCHEMISTRY, 2006, 75 :493-517
[5]   A computational model of mitochondrial deoxynucleotide metabolism and DNA replication [J].
Bradshaw, PC ;
Samuels, DC .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2005, 288 (05) :C989-C1002
[6]   A self-regulating template in human telomerase [J].
Brown, Andrew F. ;
Podlevsky, Joshua D. ;
Qi, Xiaodong ;
Chen, Yinnan ;
Xie, Mingyi ;
Chen, Julian J. -L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (31) :11311-11316
[7]   Template boundary definition in mammalian telomerase [J].
Chen, JL ;
Greider, CW .
GENES & DEVELOPMENT, 2003, 17 (22) :2747-2752
[8]   Determinants in mammalian telomerase RNA that mediate enzyme processivity and cross-species incompatibility [J].
Chen, JL ;
Greider, CW .
EMBO JOURNAL, 2003, 22 (02) :304-314
[9]   UTILIZATION OF RIBONUCLEOTIDES AND RNA PRIMERS BY TETRAHYMENA TELOMERASE [J].
COLLINS, K ;
GREIDER, CW .
EMBO JOURNAL, 1995, 14 (21) :5422-5432
[10]   Human telomerase RNA template sequence is a determinant of telomere repeat extension rate [J].
Drosopoulos, WC ;
DiRenzo, R ;
Prasad, VR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (38) :32801-32810