Improved cycling properties of a Li-rich and Mn-based Li1.38Ni0.25Mn0.75O2.38porous microspherical cathode materialviamicromorphological control

被引:1
作者
Gao, Min [1 ,2 ,3 ]
Yun, Fengling [1 ,2 ]
Zhao, Jinling [1 ,2 ]
Li, Wenjin [1 ,2 ]
Lian, Fang [3 ]
Zhuang, Weidong [1 ,2 ]
Lu, Shigang [1 ,2 ]
机构
[1] China Automot Battery Res Inst Co Ltd, Beijing 100088, Peoples R China
[2] GRINM Grp Co Ltd, Natl Power Battery Innovat Ctr, Beijing 100088, Peoples R China
[3] Univ Sci & Technol, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
基金
国家重点研发计划;
关键词
LITHIUM-RICH; ELECTROCHEMICAL PERFORMANCE; OXIDE ELECTRODES; ENERGY-DENSITY; CAPACITY; LATTICE; SURFACE; LI1.2NI0.2MN0.6O2; MICROSTRUCTURE; BATTERIES;
D O I
10.1039/d0nj02231d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A practical strategy to enhance the electrochemical performance of Li-rich and Mn-based Li(1.38)Ni(0.25)Mn(0.75)O(2.38)has been introduced. Its micromorphology and microstructure are controlled during the preparation process. Powder X-ray diffraction (XRD) and Raman spectroscopy reveal that the as-obtained materials can be indexed as the alpha-NaFeO(2)phase. Field emission scanning electron microscopy (FESEM) analyses demonstrate that the as-fabricated Li(1.38)Ni(0.25)Mn(0.75)O(2.38)materials consist of 10-15 mu m spherical secondary particles aggregating with spherical nanoscale primary particles, and the primary particle size and stacking faults can be controlled by altering the calcination temperature. The electrochemical measurements show that Li(1.38)Ni(0.25)Mn(0.75)O(2.38)with nanoscale primary particles with the diameter of 100-200 nm and an appropriate amount of stacking faults obtained at 850 degrees C exhibits higher capacity and superior cycling performance, delivering an initial discharge capacity of 265.7 mA h g(-1)at 0.1C, 243.1 mA h g(-1)at 0.2C, 222 mA h g(-1)at 1.0C and 169 mA h g(-1)at 2.0C, accompanied with a capacity retention of 89.3% and 78.6% after 300 cycles and 500 cycles at 1.0C, respectively. Meanwhile, the XPS, EIS and TEM results of the electrodes indicate that the capacity fading in the first 50 cycles may be caused by interfacial side-reactions between electrode and electrolyte.
引用
收藏
页码:13074 / 13082
页数:9
相关论文
共 39 条
  • [11] Ex situ and in situ Raman microscopic investigation of the differences between stoichiometric LiMO2 and high-energy xLi2MnO3.(1-x)LiMO2 (M = Ni, Co, Mn)
    Lanz, Patrick
    Villevieille, Claire
    Novak, Petr
    [J]. ELECTROCHIMICA ACTA, 2014, 130 : 206 - 212
  • [12] Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay
    Lee, Eun-Sung
    Manthiram, Arumugam
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (11) : 3932 - 3939
  • [13] Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability
    Li, J.
    Kloepsch, R.
    Stan, M. C.
    Nowak, S.
    Kunze, M.
    Winter, M.
    Passerini, S.
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (10) : 4821 - 4825
  • [14] High-performance lithium-rich layered oxide materials: Effects of chelating agents on microstructure and electrochemical properties
    Li, Lingjun
    Xu, Ming
    Chen, Zhaoyong
    Zhou, Xiang
    Zhang, Qiaobao
    Zhu, Huali
    Wu, Chun
    Zhang, Kaili
    [J]. ELECTROCHIMICA ACTA, 2015, 174 : 446 - 455
  • [15] Hierarchical Mesoporous Lithium-Rich Li[Li0.2Ni0.2Mn0.6]O2 Cathode Material Synthesized via Ice Templating for Lithium-Ion Battery
    Li, Yu
    Wu, Chuan
    Bai, Ying
    Liu, Lu
    Wang, Hui
    Wu, Feng
    Zhang, Na
    Zou, Yufeng
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (29) : 18832 - 18840
  • [16] Three-dimensional fusiform hierarchical micro/nano Li1.2Ni0.2Mn0.6O2 with a preferred orientation (110) plane as a high energy cathode material for lithium-ion batteries
    Li, Yu
    Bai, Ying
    Wu, Chuan
    Qian, Ji
    Chen, Guanghai
    Liu, Lu
    Wang, Hui
    Zhou, Xingzhen
    Wu, Feng
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (16) : 5942 - 5951
  • [17] An Effectively Activated Hierarchical Nano-/Microspherical Li1.2Ni0.2Mn0.6O2 Cathode for Long-Life and High-Rate Lithium-Ion Batteries
    Li, Yu
    Bai, Ying
    Bi, Xuanxuan
    Qian, Ji
    Ma, Lu
    Tian, Jun
    Wu, Chuan
    Wu, Feng
    Lu, Jun
    Amine, Khalil
    [J]. CHEMSUSCHEM, 2016, 9 (07) : 728 - 735
  • [18] Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes
    Liu, Jun
    Wang, Qiongyu
    Reeja-Jayan, B.
    Manthiram, Arumugam
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (06) : 750 - 753
  • [19] Discovery of a surface protective layer: A new insight into countering capacity and voltage degradation for high-energy lithium-ion batteries
    Luo, Dong
    Fang, Shaohua
    Tian, Qinghua
    Qu, Long
    Yang, Li
    Hirano, Shin-ichi
    [J]. NANO ENERGY, 2016, 21 : 198 - 208
  • [20] Surface studies of high voltage lithium rich composition: Li1.2Mn0.525Ni0.175Co0.1O2
    Martha, Surendra K.
    Nanda, Jagjit
    Veith, Gabriel M.
    Dudney, Nancy J.
    [J]. JOURNAL OF POWER SOURCES, 2012, 216 : 179 - 186