Improved cycling properties of a Li-rich and Mn-based Li1.38Ni0.25Mn0.75O2.38porous microspherical cathode materialviamicromorphological control

被引:1
作者
Gao, Min [1 ,2 ,3 ]
Yun, Fengling [1 ,2 ]
Zhao, Jinling [1 ,2 ]
Li, Wenjin [1 ,2 ]
Lian, Fang [3 ]
Zhuang, Weidong [1 ,2 ]
Lu, Shigang [1 ,2 ]
机构
[1] China Automot Battery Res Inst Co Ltd, Beijing 100088, Peoples R China
[2] GRINM Grp Co Ltd, Natl Power Battery Innovat Ctr, Beijing 100088, Peoples R China
[3] Univ Sci & Technol, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
基金
国家重点研发计划;
关键词
LITHIUM-RICH; ELECTROCHEMICAL PERFORMANCE; OXIDE ELECTRODES; ENERGY-DENSITY; CAPACITY; LATTICE; SURFACE; LI1.2NI0.2MN0.6O2; MICROSTRUCTURE; BATTERIES;
D O I
10.1039/d0nj02231d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A practical strategy to enhance the electrochemical performance of Li-rich and Mn-based Li(1.38)Ni(0.25)Mn(0.75)O(2.38)has been introduced. Its micromorphology and microstructure are controlled during the preparation process. Powder X-ray diffraction (XRD) and Raman spectroscopy reveal that the as-obtained materials can be indexed as the alpha-NaFeO(2)phase. Field emission scanning electron microscopy (FESEM) analyses demonstrate that the as-fabricated Li(1.38)Ni(0.25)Mn(0.75)O(2.38)materials consist of 10-15 mu m spherical secondary particles aggregating with spherical nanoscale primary particles, and the primary particle size and stacking faults can be controlled by altering the calcination temperature. The electrochemical measurements show that Li(1.38)Ni(0.25)Mn(0.75)O(2.38)with nanoscale primary particles with the diameter of 100-200 nm and an appropriate amount of stacking faults obtained at 850 degrees C exhibits higher capacity and superior cycling performance, delivering an initial discharge capacity of 265.7 mA h g(-1)at 0.1C, 243.1 mA h g(-1)at 0.2C, 222 mA h g(-1)at 1.0C and 169 mA h g(-1)at 2.0C, accompanied with a capacity retention of 89.3% and 78.6% after 300 cycles and 500 cycles at 1.0C, respectively. Meanwhile, the XPS, EIS and TEM results of the electrodes indicate that the capacity fading in the first 50 cycles may be caused by interfacial side-reactions between electrode and electrolyte.
引用
收藏
页码:13074 / 13082
页数:9
相关论文
共 39 条
[11]   Ex situ and in situ Raman microscopic investigation of the differences between stoichiometric LiMO2 and high-energy xLi2MnO3.(1-x)LiMO2 (M = Ni, Co, Mn) [J].
Lanz, Patrick ;
Villevieille, Claire ;
Novak, Petr .
ELECTROCHIMICA ACTA, 2014, 130 :206-212
[12]   Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay [J].
Lee, Eun-Sung ;
Manthiram, Arumugam .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (11) :3932-3939
[13]   Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability [J].
Li, J. ;
Kloepsch, R. ;
Stan, M. C. ;
Nowak, S. ;
Kunze, M. ;
Winter, M. ;
Passerini, S. .
JOURNAL OF POWER SOURCES, 2011, 196 (10) :4821-4825
[14]   High-performance lithium-rich layered oxide materials: Effects of chelating agents on microstructure and electrochemical properties [J].
Li, Lingjun ;
Xu, Ming ;
Chen, Zhaoyong ;
Zhou, Xiang ;
Zhang, Qiaobao ;
Zhu, Huali ;
Wu, Chun ;
Zhang, Kaili .
ELECTROCHIMICA ACTA, 2015, 174 :446-455
[15]   Hierarchical Mesoporous Lithium-Rich Li[Li0.2Ni0.2Mn0.6]O2 Cathode Material Synthesized via Ice Templating for Lithium-Ion Battery [J].
Li, Yu ;
Wu, Chuan ;
Bai, Ying ;
Liu, Lu ;
Wang, Hui ;
Wu, Feng ;
Zhang, Na ;
Zou, Yufeng .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (29) :18832-18840
[16]   Three-dimensional fusiform hierarchical micro/nano Li1.2Ni0.2Mn0.6O2 with a preferred orientation (110) plane as a high energy cathode material for lithium-ion batteries [J].
Li, Yu ;
Bai, Ying ;
Wu, Chuan ;
Qian, Ji ;
Chen, Guanghai ;
Liu, Lu ;
Wang, Hui ;
Zhou, Xingzhen ;
Wu, Feng .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (16) :5942-5951
[17]   An Effectively Activated Hierarchical Nano-/Microspherical Li1.2Ni0.2Mn0.6O2 Cathode for Long-Life and High-Rate Lithium-Ion Batteries [J].
Li, Yu ;
Bai, Ying ;
Bi, Xuanxuan ;
Qian, Ji ;
Ma, Lu ;
Tian, Jun ;
Wu, Chuan ;
Wu, Feng ;
Lu, Jun ;
Amine, Khalil .
CHEMSUSCHEM, 2016, 9 (07) :728-735
[18]   Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes [J].
Liu, Jun ;
Wang, Qiongyu ;
Reeja-Jayan, B. ;
Manthiram, Arumugam .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (06) :750-753
[19]   Discovery of a surface protective layer: A new insight into countering capacity and voltage degradation for high-energy lithium-ion batteries [J].
Luo, Dong ;
Fang, Shaohua ;
Tian, Qinghua ;
Qu, Long ;
Yang, Li ;
Hirano, Shin-ichi .
NANO ENERGY, 2016, 21 :198-208
[20]   Surface studies of high voltage lithium rich composition: Li1.2Mn0.525Ni0.175Co0.1O2 [J].
Martha, Surendra K. ;
Nanda, Jagjit ;
Veith, Gabriel M. ;
Dudney, Nancy J. .
JOURNAL OF POWER SOURCES, 2012, 216 :179-186