β-Hill Climbing algorithm for sudoku game

被引:15
作者
Al-Betar, Mohammed Azmi [1 ]
Awadallah, Mohammed A. [2 ]
Bolaji, Asaju La'aro [3 ]
Alijla, Basem O. [4 ]
机构
[1] Al Balqa Appl Univ, Dept Informat Technol, POB 50, Irbid, Jordan
[2] Al Aqsa Univ, Dept Comp Sci, POB 4051, Gaza, Palestine
[3] Fed Univ Wukari, Dept Comp Sci, PMB 1020, Wukari, Taraba State, Nigeria
[4] Islamic Univ Gaza, Fac Informat Technol, Gaza, Palestine
来源
2017 PALESTINIAN INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (PICICT) | 2017年
关键词
beta-Hill Climbing; Optimization; Sudoku puzzle; Artificial Intelligent; local search; SOLVING SUDOKU; SEARCH; METAHEURISTICS; OPTIMIZATION;
D O I
10.1109/PICICT.2017.11
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, beta-Hill Climbing algorithm, the recent local search-based meta-heuristic, are tailored for Sudoku puzzle. beta-Hill Climbing algorithm is a new extended version of hill climbing algorithm which has the capability to escape the local optima using a stochastic operator called beta-operator. The Sudoku puzzle is a popular game formulated as an optimization problem to come up with exact solution. Some Sudoku puzzle examples have been applied for evaluation process. The parameters of the beta-Hill Climbing is also studied to show the best configuration used for this game. beta-Hill Climbing in its best parameter configuration is able to find solution for Sudoku puzzle in 19 iterations and 2 seconds.
引用
收藏
页码:84 / 88
页数:5
相关论文
共 18 条
[1]  
Al-Betar MA, 2017, NEURAL COMPUT APPL, V28, pS153, DOI 10.1007/s00521-016-2328-2
[2]   Hybrid metaheuristics in combinatorial optimization: A survey [J].
Blum, Christian ;
Puchinger, Jakob ;
Raidl, Guenther R. ;
Roli, Andrea .
APPLIED SOFT COMPUTING, 2011, 11 (06) :4135-4151
[3]   A survey on optimization metaheuristics [J].
Boussaid, Ilhern ;
Lepagnot, Julien ;
Siarry, Patrick .
INFORMATION SCIENCES, 2013, 237 :82-117
[4]   A novel hybrid genetic algorithm for solving Sudoku puzzles [J].
Deng, Xiu Qin ;
Li, Yong Da .
OPTIMIZATION LETTERS, 2013, 7 (02) :241-257
[5]   GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURES [J].
FEO, TA ;
RESENDE, MGC .
JOURNAL OF GLOBAL OPTIMIZATION, 1995, 6 (02) :109-133
[6]  
Geem ZW, 2007, LECT NOTES COMPUT SC, V4692, P371
[7]   FUTURE PATHS FOR INTEGER PROGRAMMING AND LINKS TO ARTIFICIAL-INTELLIGENCE [J].
GLOVER, F .
COMPUTERS & OPERATIONS RESEARCH, 1986, 13 (05) :533-549
[8]   Variable neighborhood search: Principles and applications [J].
Hansen, P ;
Mladenovic, N .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 130 (03) :449-467
[9]   OPTIMIZATION BY SIMULATED ANNEALING [J].
KIRKPATRICK, S ;
GELATT, CD ;
VECCHI, MP .
SCIENCE, 1983, 220 (4598) :671-680
[10]   Metaheuristics can solve sudoku puzzles [J].
Lewis, Rhyd .
JOURNAL OF HEURISTICS, 2007, 13 (04) :387-401