Accurate Period Approximation for Any Simple Pendulum Amplitude

被引:3
|
作者
Xue De-Sheng [1 ]
Zhou Zhao [1 ]
Gao Mei-Zhen [1 ]
机构
[1] Lanzhou Univ, Minist Educ, Key Lab Magnetism & Magnet Mat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
NONLINEAR PENDULUM; FORMULAS;
D O I
10.1088/0256-307X/29/4/044601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Accurate approximate analytical formulae of the pendulum period composed of a few elementary functions for any amplitude are constructed. Based on an approximation of the elliptic integral, two new logarithmic formulae for large amplitude close to 180 degrees are obtained. Considering the trigonometric function modulation results from the dependence of relative error on the amplitude, we realize accurate approximation period expressions for any amplitude between 0 and 180 degrees. A relative error less than 0.02% is achieved for any amplitude. This kind of modulation is also effective for other large-amplitude logarithmic approximation expressions.
引用
收藏
页数:4
相关论文
共 13 条
  • [1] Approximation for a large-angle simple pendulum period
    Belendez, A.
    Rodes, J. J.
    Belendez, T.
    Hernandez, A.
    EUROPEAN JOURNAL OF PHYSICS, 2009, 30 (02) : L25 - L28
  • [2] Comment on 'Approximation for a large-angle simple pendulum period'
    Yuan Qing-Xin
    Ding Pei
    EUROPEAN JOURNAL OF PHYSICS, 2009, 30 (05) : L79 - L82
  • [3] Improvements in the approximate formulae for the period of the simple pendulum
    Turkyilmazoglu, M.
    EUROPEAN JOURNAL OF PHYSICS, 2010, 31 (05) : 1007 - 1011
  • [4] The high-precision computation of the period of the simple pendulum
    Carvalhaes, Claudio G.
    Suppes, Patrick
    REVISTA BRASILEIRA DE ENSINO DE FISICA, 2009, 31 (02):
  • [5] Approximate expressions for the period of a simple pendulum using a Taylor series expansion
    Belendez, Augusto
    Arribas, Enrique
    Marquez, Andres
    Ortuno, Manuel
    Gallego, Sergi
    EUROPEAN JOURNAL OF PHYSICS, 2011, 32 (05) : 1303 - 1310
  • [6] Review of approximate equations for the pendulum period
    Hinrichsen, Peter F.
    EUROPEAN JOURNAL OF PHYSICS, 2021, 42 (01)
  • [7] An analytical approximation of a pendulum trajectory
    Salinas-Hernandez, E.
    Ares de Parga, G.
    Dominguez-Hernandez, S.
    Munoz-Vega, R.
    EUROPEAN JOURNAL OF PHYSICS, 2014, 35 (04)
  • [8] Approximation by amplitude and frequency operators
    Chunaev, Petr
    Danchenko, Vladimir
    JOURNAL OF APPROXIMATION THEORY, 2016, 207 : 1 - 31
  • [9] The period of the damped non-linear pendulum
    Hinrichsen, Peter F.
    EUROPEAN JOURNAL OF PHYSICS, 2020, 41 (05)
  • [10] An anharmonic solution to the equation of motion for the simple pendulum
    Johannessen, Kim
    EUROPEAN JOURNAL OF PHYSICS, 2011, 32 (02) : 407 - 417