Interfacial energies on quasicrystals

被引:12
作者
Braides, Andrea [1 ]
Causin, Andrea [2 ]
Solci, Margherita [2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Sassari, DAP, I-07041 Alghero, SS, Italy
关键词
quasicrystals; spin systems; ferromagnetic interactions; Gamma-convergence; homogenization; quasiperiodic functions;
D O I
10.1093/imamat/hxs046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider nearest-neighbour ferromagnetic energies defined on a quasicrystal modeled following the so-called cut-and-project approach as a portion of a regular lattice contained in a possibly irrational stripe defined as a neighborhood of a k-dimensional subspace in an n-dimensional space. The overall properties of this system are described by an effective surface energy on a k-dimensional space obtained as Gamma-limit of the scaled discrete energies.
引用
收藏
页码:816 / 836
页数:21
相关论文
共 15 条
[11]   Homogenization of Penrose tilings [J].
Braides, Andrea ;
Riey, Giuseppe ;
Solci, Margherita .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (11-12) :697-700
[12]   Homogenization by blow-up [J].
Braides, Andrea ;
Maslennikov, Mikhail ;
Sigalotti, Laura .
APPLICABLE ANALYSIS, 2008, 87 (12) :1341-1356
[13]  
DEBRUIJN NG, 1981, P K NED AKAD A MATH, V84, P39
[14]   QUASI-CONVEX INTEGRANDS AND LOWER SEMICONTINUITY IN L1 [J].
FONSECA, I ;
MULLER, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (05) :1081-1098
[15]  
Senechal M., 1995, Quasicrystals and Geometry