Rational torus-equivariant stable homotopy II: Algebra of the standard model

被引:6
作者
Greenlees, J. P. C. [1 ]
机构
[1] Univ Sheffield, Dept Pure Math, Sheffield S3 7RH, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.jpaa.2012.02.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any torus G = S-1 x ... x S-1, the author has introduced [2] a category A(G) and together with Shipley has shown that [3] it provides an algebraic model for rational G-equivariant cohomology theories. This paper studies a number of purely algebraic properties of A(G). It is shown that the category A(G) has injective dimension equal to the rank of G. flatness properties are proved and right adjoints are constructed for the inclusion of A(G) into certain larger categories, giving explicit constructions of limits in A(G). (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2141 / 2158
页数:18
相关论文
共 3 条
[1]   Rational torus-equivariant stable homotopy I: Calculating groups of stable maps [J].
Greenlees, J. P. C. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (01) :72-98
[2]  
Greenlees J.P.C., 1999, MEMOIRS AM MATH SOC, V661, pxii
[3]  
Greenlees J.P.C., 2011, ARXIV11012511, P75