The motion of Saturn coorbital satellites in the restricted three-body problem

被引:30
作者
Llibre, J
Ollé, M
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Spain
[2] Univ Politecn Catalunya, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
关键词
celestial mechanics; planets and satellites; solar system;
D O I
10.1051/0004-6361:20011274
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper provides a description of the motion of Saturn coorbital satellites Janus and Epimetheus by means of horseshoe periodic orbits in the framework of the planar restricted three-body problem for the mass parameter mu = 3.5 X 10(- 9). The mechanism of existence of such orbits for any value of mu > 0 and the Jacobi constant C close to C(L-3), L-3 being an adequate collinear equilibrium point, is analyzed from two different points of view and a systematic way to compute the horseshoe periodic orbits is also described.
引用
收藏
页码:1087 / 1099
页数:13
相关论文
共 23 条
[1]  
AKSNES K, 1985, STABILITY SOLAR SYST, P3
[2]  
BRAY TA, 1967, ADV ASTRONOMY ASTROP, V5, P71
[3]  
CORS JM, UNPUB
[4]   THE DYNAMICS OF TADPOLE AND HORSESHOE ORBITS .1. THEORY [J].
DERMOTT, SF ;
MURRAY, CD .
ICARUS, 1981, 48 (01) :1-11
[5]   THE DYNAMICS OF TADPOLE AND HORSESHOE ORBITS .2. THE CO-ORBITAL SATELLITES OF SATURN [J].
DERMOTT, SF ;
MURRAY, CD .
ICARUS, 1981, 48 (01) :12-22
[6]   NARROW RINGS OF JUPITER, SATURN AND URANUS [J].
DERMOTT, SF ;
MURRAY, CD ;
SINCLAIR, AT .
NATURE, 1980, 284 (5754) :309-313
[7]  
FONT J, 1990, THESIS BARCELONA U
[8]  
GARFINKEL B, 1978, CELESTIAL MECH, V18, P259, DOI 10.1007/BF01230167
[9]   THEORY OF TROJAN ASTEROIDS .1. [J].
GARFINKEL, B .
ASTRONOMICAL JOURNAL, 1977, 82 (05) :368-379
[10]   THEORY OF THE TROJAN ASTEROIDS .3. [J].
GARFINKEL, B .
CELESTIAL MECHANICS, 1980, 22 (03) :267-287