Recruitment of the cell cycle checkpoint kinase ATR to chromatin during S-phase

被引:103
作者
Dart, DA [1 ]
Adams, KE [1 ]
Akerman, I [1 ]
Lakin, ND [1 ]
机构
[1] Univ Oxford, Dept Biochem, Oxford OX1 3QU, England
关键词
D O I
10.1074/jbc.M314212200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ataxia telangiectasia-mutated (ATM) and Rad3-related kinase (ATR) is a central component of the cell cycle checkpoint machinery required to induce cell cycle arrest in response to DNA damage. Accumulating evidence suggests a role for ATR in signaling DNA damage during S-phase. Here we show that ATR is recruited to nuclear foci induced by replication fork stalling in a manner that is dependent on the single stranded binding protein replication protein A (RPA). ATR associates with chromatin in asynchronous cell cultures, and we use a variety of approaches to examine the association of ATR with chromatin in the absence of agents that cause genotoxic stress. Under our experimental conditions, ATR exhibits a decreased affinity for chromatin in quiescent cells and cells synchronized at mitosis but an increased affinity for chromatin as cells re-enter the cell cycle. Using centrifugal elutriation to obtain cells enriched at various stages of the cell cycle, we show that ATR associates with chromatin in a cell cycle-dependent manner, specifically during S-phase. Cell cycle association of ATR with chromatin mirrors that of RPA in addition to claspin, a cell cycle checkpoint protein previously shown to be a component of the replication machinery. Furthermore, association of ATR with chromatin occurs in the absence of detectable DNA damage and cell cycle checkpoint activation. These data are consistent with a model whereby ATR is recruited to chromatin during the unperturbed cell cycle and points to a role of ATR in monitoring genome integrity during normal S-phase progression.
引用
收藏
页码:16433 / 16440
页数:8
相关论文
共 44 条
[1]   Cell cycle checkpoint signaling through the ATM and ATR kinases [J].
Abraham, RT .
GENES & DEVELOPMENT, 2001, 15 (17) :2177-2196
[2]   Replication licensing - defining the proliferative state? [J].
Blow, JJ ;
Hodgson, B .
TRENDS IN CELL BIOLOGY, 2002, 12 (02) :72-78
[3]  
Brown EJ, 2000, GENE DEV, V14, P397
[4]   Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance [J].
Brown, EJ ;
Baltimore, D .
GENES & DEVELOPMENT, 2003, 17 (05) :615-628
[5]   Retention of the human Rad9 checkpoint complex in extraction-resistant nuclear complexes after DNA damage [J].
Burtelow, MA ;
Kaufmann, SH ;
Karnitz, LM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (34) :26343-26348
[6]   ATR regulates fragile site stability [J].
Casper, AM ;
Nghiem, P ;
Arlt, MF ;
Glover, TW .
CELL, 2002, 111 (06) :779-789
[7]   ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones [J].
Cha, RS ;
Kleckner, N .
SCIENCE, 2002, 297 (5581) :602-606
[8]   Human claspin is required for replication checkpoint control [J].
Christiano, C ;
Chini, S ;
Chen, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (32) :30057-30062
[9]   Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints [J].
Cliby, WA ;
Roberts, CJ ;
Cimprich, KA ;
Stringer, CM ;
Lamb, JR ;
Schreiber, SL ;
Friend, SH .
EMBO JOURNAL, 1998, 17 (01) :159-169
[10]   Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice [J].
de Klein, A ;
Muijtjens, M ;
van Os, R ;
Verhoeven, Y ;
Smit, B ;
Carr, AM ;
Lehmann, AR ;
Hoeijmakers, JHJ .
CURRENT BIOLOGY, 2000, 10 (08) :479-482